Hive几种数据导入方式


好久没写Hive的那些事了,今天开始写点吧。今天的话题是总结Hive的几种常见的数据导入方式,我总结为四种:
(1)、从本地文件系统中导入数据到Hive表;
(2)、从HDFS上导入数据到Hive表;
(3)、从别的表中查询出相应的数据并导入到Hive表中;
(4)、在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中。
我会对每一种数据的导入进行实际的操作,因为纯粹的文字让人看起来很枯燥,而且学起来也很抽象。好了,开始操作!

  一、从本地文件系统中导入数据到Hive表
  先在Hive里面创建好表,如下:

1 hive> create table wyp
2     > (id int, name string,
3     > age int, tel string)
4     > ROW FORMAT DELIMITED
5     > FIELDS TERMINATED BY '\t'
6     > STORED AS TEXTFILE;
7 OK
8 Time taken: 2.832 seconds

这个表很简单,只有四个字段,具体含义我就不解释了。本地文件系统里面有个/home/wyp/wyp.txt文件,内容如下:

1 [wyp@master ~]$ cat wyp.txt
2 1       wyp     25      13188888888888
3 2       test    30      13888888888888
4 3       zs      34      899314121

wyp.txt文件中的数据列之间是使用\t分割的,可以通过下面的语句将这个文件里面的数据导入到wyp表里面,操作如下:

1 hive> load data local inpath 'wyp.txt' into table wyp;
2 Copying data from file:/home/wyp/wyp.txt
3 Copying file: file:/home/wyp/wyp.txt
4 Loading data to table default.wyp
5 Table default.wyp stats:
6 [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 67]
7 OK
8 Time taken: 5.967 seconds

这样就将wyp.txt里面的内容导入到wyp表里面去了(关于这里面的执行过程大家可以参见本博客的《Hive表与外部表》),可以到wyp表的数据目录下查看,如下命令:

1 hive> dfs -ls /user/hive/warehouse/wyp ;
2 Found 1 items
3 -rw-r--r--3 wyp supergroup 67 2014-02-19 18:23 /hive/warehouse/wyp/wyp.txt

数据的确导入到wyp表里面去了。

  和我们熟悉的关系型数据库不一样,Hive现在还不支持在insert语句里面直接给出一组记录的文字形式,也就是说,Hive并不支持INSERT INTO …. VALUES形式的语句。

  二、HDFS上导入数据到Hive表
  从本地文件系统中将数据导入到Hive表的过程中,其实是先将数据临时复制到HDFS的一个目录下(典型的情况是复制到上传用户的HDFS home目录下,比如/home/wyp/),然后再将数据从那个临时目录下移动(注意,这里说的是移动,不是复制!)到对应的Hive表的数据目录里面。既然如此,那么Hive肯定支持将数据直接从HDFS上的一个目录移动到相应Hive表的数据目录下,假设有下面这个文件/home/wyp/add.txt,具体的操作如下:

1 [wyp@master /home/q/hadoop-2.2.0]$ bin/hadoop fs -cat /home/wyp/add.txt
2 5       wyp1    23      131212121212
3 6       wyp2    24      134535353535
4 7       wyp3    25      132453535353
5 8       wyp4    26      154243434355

  上面是需要插入数据的内容,这个文件是存放在HDFS上/home/wyp目录(和一中提到的不同,一中提到的文件是存放在本地文件系统上)里面,我们可以通过下面的命令将这个文件里面的内容导入到Hive表中,具体操作如下:

01 hive> load data inpath '/home/wyp/add.txt' into table wyp;
02 Loading data to table default.wyp
03 Table default.wyp stats:
04 [num_partitions: 0, num_files: 2, num_rows: 0, total_size: 215]
05 OK
06 Time taken: 0.47 seconds
07  
08 hive> select * from wyp;
09 OK
10 5       wyp1    23      131212121212
11 6       wyp2    24      134535353535
12 7       wyp3    25      132453535353
13 8       wyp4    26      154243434355
14 1       wyp     25      13188888888888
15 2       test    30      13888888888888
16 3       zs      34      899314121
17 Time taken: 0.096 seconds, Fetched: 7 row(s)

  从上面的执行结果我们可以看到,数据的确导入到wyp表中了!请注意load data inpath ‘/home/wyp/add.txt’ into table wyp;里面是没有local这个单词的,这个是和一中的区别。

  三、从别的表中查询出相应的数据并导入到Hive表中
  假设Hive中有test表,其建表语句如下所示:

01 hive> create table test(
02     > id int, name string
03     > ,tel string)
04     > partitioned by
05     > (age int)
06     > ROW FORMAT DELIMITED
07     > FIELDS TERMINATED BY '\t'
08     > STORED AS TEXTFILE;
09 OK
10 Time taken: 0.261 seconds

  大体和wyp表的建表语句类似,只不过test表里面用age作为了分区字段(关于什么是分区字段,请参见本博客的《Hive的数据存储模式》中的介绍,其详细的介绍本博客将会在接下来的时间内介绍,请关注本博客!)。下面语句就是将wyp表中的查询结果并插入到test表中:

01 hive> insert into table test
02     > partition (age='25')
03     > select id, name, tel
04     > from wyp;
05 #####################################################################
06            这里输出了一堆Mapreduce任务信息,这里省略
07 #####################################################################
08 Total MapReduce CPU Time Spent: 1 seconds 310 msec
09 OK
10 Time taken: 19.125 seconds
11  
12 hive> select * from test;
13 OK
14 5       wyp1    131212121212    25
15 6       wyp2    134535353535    25
16 7       wyp3    132453535353    25
17 8       wyp4    154243434355    25
18 1       wyp     13188888888888  25
19 2       test    13888888888888  25
20 3       zs      899314121       25
21 Time taken: 0.126 seconds, Fetched: 7 row(s)

  通过上面的输出,我们可以看到从wyp表中查询出来的东西已经成功插入到test表中去了!如果目标表(test)中不存在分区字段,可以去掉partition (age=’25’)语句。当然,我们也可以在select语句里面通过使用分区值来动态指明分区:

01 hive> set hive.exec.dynamic.partition.mode=nonstrict;
02 hive> insert into table test
03     > partition (age)
04     > select id, name,
05     > tel, age
06     > from wyp;
07 #####################################################################
08            这里输出了一堆Mapreduce任务信息,这里省略
09 #####################################################################
10 Total MapReduce CPU Time Spent: 1 seconds 510 msec
11 OK
12 Time taken: 17.712 seconds
13  
14  
15 hive> select * from test;
16 OK
17 5       wyp1    131212121212    23
18 6       wyp2    134535353535    24
19 7       wyp3    132453535353    25
20 1       wyp     13188888888888  25
21 8       wyp4    154243434355    26
22 2       test    13888888888888  30
23 3       zs      899314121       34
24 Time taken: 0.399 seconds, Fetched: 7 row(s)

  这种方法叫做动态分区插入,但是Hive中默认是关闭的,所以在使用前需要先把hive.exec.dynamic.partition.mode设置为nonstrict。当然,Hive也支持insert overwrite方式来插入数据,从字面我们就可以看出,overwrite是覆盖的意思,是的,执行完这条语句的时候,相应数据目录下的数据将会被覆盖!而insert into则不会,注意两者之间的区别。例子如下:

1 hive> insert overwrite table test
2     > PARTITION (age)
3     > select id, name, tel, age
4     > from wyp;

  更可喜的是,Hive还支持多表插入,什么意思呢?在Hive中,我们可以把insert语句倒过来,把from放在最前面,它的执行效果和放在后面是一样的,如下:

01 hive> show create table test3;
02 OK
03 CREATE  TABLE test3(
04   id int,
05   name string)
06 Time taken: 0.277 seconds, Fetched: 18 row(s)
07  
08 hive> from wyp
09     > insert into table test
10     > partition(age)
11     > select id, name, tel, age
12     > insert into table test3
13     > select id, name
14     > where age>25;
15  
16 hive> select * from test3;
17 OK
18 8       wyp4
19 2       test
20 3       zs
21 Time taken: 4.308 seconds, Fetched: 3 row(s)

  可以在同一个查询中使用多个insert子句,这样的好处是我们只需要扫描一遍源表就可以生成多个不相交的输出。这个很酷吧!

  四、在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中
  在实际情况中,表的输出结果可能太多,不适于显示在控制台上,这时候,将Hive的查询输出结果直接存在一个新的表中是非常方便的,我们称这种情况为CTAS(create table .. as select)如下:

01 hive> create table test4
02     > as
03     > select id, name, tel
04     > from wyp;
05  
06 hive> select * from test4;
07 OK
08 5       wyp1    131212121212
09 6       wyp2    134535353535
10 7       wyp3    132453535353
11 8       wyp4    154243434355
12 1       wyp     13188888888888
13 2       test    13888888888888
14 3       zs      899314121
15 Time taken: 0.089 seconds, Fetched: 7 row(s)

  数据就插入到test4表中去了,CTAS操作是原子的,因此如果select查询由于某种原因而失败,新表是不会创建的!
  好了,很晚了,今天就到这,洗洗睡!2014年2月20日 00:59:17

Hive 是一种基于 Hadoop 的数据仓库工具,用于查询和管理大规模数据集。为了高效地分批导入数据Hive 中,通常采用以下几种方法: ### 1. 使用 LOAD DATA INPATH 逐步导入 Hive 提供了 `LOAD DATA INPATH` 命令,允许从本地文件系统逐批读取数据并插入到表中。这种方式适用于小型数据集或单次增量更新的情况。 #### 示例: ```sql INSERT OVERWRITE TABLE my_table PARTITION (my_partition) SELECT * FROM my_source_file; ``` 这里假设 `my_source_file` 包含待导入数据,每次运行此 SQL 都可以从该文件读取一部分数据导入。 ### 2. 分区导入 利用 Hive 表的分区特性,可以将数据按照特定字段(例如时间戳)分割到不同的分区中。这样每次只导入一个分区的数据,提高了导入效率和管理便利性。 #### 示例: 创建包含分区的表: ```sql CREATE TABLE my_table ( col1 STRING, col2 INT, date DATE ) PARTITIONED BY (date); ``` 导入数据时,指定具体的分区日期: ```sql LOAD DATA LOCAL INPATH '/path/to/my_data_20230101.txt' OVERWRITE INTO TABLE my_table PARTITION (date='20230101'); ``` ### 3. 使用 MapReduce 或 Streaming API 批量处理 对于非常大的数据集,可以使用 MapReduce 来处理。创建自定义的 MapReduce job 将大量数据切分为更小块,然后并行处理每个块,最后汇总结果至 Hive 表中。 ### 4. 利用 Sqoop 或 Beeline 进行分批次导入 Sqoop 是 Hadoop 与 RDBMS 之间的数据导入导出工具,可以分批次导入数据。Beeline 是 Hive 的交互式命令行界面,同样支持分批次导入数据。 #### 示例: 使用 Sqoop 导入数据: ```bash sqoop import --connect <jdbc_url> \ --username <username> \ --password <password> \ --hive-table <hive_table_name> \ --split-by <column_name> ``` 此处 `<jdbc_url>`、`<username>`、`<password>`、`<table_name>` 和 `<hive_table_name>` 分别表示连接信息、表名和 Hive 表名;`<column_name>` 是用于分隔导入数据块的列名。 ### 相关问题: 1. 如何确定最佳的数据分批大小? 数据分批大小的选择依赖于数据的大小、存储性能、网络状况和处理能力等多个因素。通常建议先从较小的分批开始测试,再根据性能监控结果调整。 2. 如何监控 Hive 分批导入的性能? 使用 Hive 的日志记录和监控工具,如 YARN、Apache Tez 或 Apache Flink,监视导入过程中的 CPU 使用、内存消耗、I/O 活动等关键指标。 3. 分批导入时如何保证数据一致性? 确保在每一批数据导入前进行必要的数据清理和验证工作,例如检查文件完整性、校验数据格式和范围等。在完成所有批次导入后,还可以执行一次整体的完整性检查来确认数据一致性。 请确保在执行上述操作之前备份好原始数据,以防止意外丢失重要信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值