均方根误差(RMSE),平均绝对误差(MAE),标准差(Standard Deviation)的对比

RMSE

  • Root Mean Square Error,均方根误差
  • 是观测值与真值偏差的平方和与观测次数m比值的平方根。
  • 是用来衡量观测值同真值之间的偏差

MAE

  • Mean Absolute Error ,平均绝对误差
  • 是绝对误差的平均值
  • 能更好地反映预测值误差的实际情况.

标准差

  • Standard Deviation ,标准差
  • 是方差的算数平方根
  • 是用来衡量一组数自身的离散程度

这里写图片描述


RMSE与标准差对比:标准差是用来衡量一组数自身的离散程度,而均方根误差是用来衡量观测值同真值之间的偏差,它们的研究对象和研究目的不同,但是计算过程类似。

RMSE与MAE对比:RMSE相当于L2范数,MAE相当于L1范数。次数越高,计算结果就越与较大的值有关,而忽略较小的值,所以这就是为什么RMSE针对异常值更敏感的原因(即有一个预测值与真实值相差很大,那么RMSE就会很大)。

本文转载于https://blog.csdn.net/capecape/article/details/78623897

MAERMSE是常用的评估回归模型预测准确性的指标,它们之间有一些区别。MAE表示预测值和观测值之间绝对误差平均值,而RMSE表示预测值和观测值之间误差平方的平均值的平方根。[3] 一个主要的区别是MAE是线性的,而RMSE是二次的。MAE对所有个体差异在平均值上的权重都相等,即所有误差的绝对值都以相等的权重计算。相比之下,RMSE对于较大的误差值更敏感。这意味着如果存在一个预测值与真实值之间的异常大差异,RMSE的值会更大,因为RMSE惩罚异常值更多。 另一个区别是RMSE通常会大于或等于MAE。唯一的情况是当所有的残差都相等或都为零时,MAERMSE的值才相等。因此,当预测值与真实值之间的差异较大时,RMSE的值会更大。 总结来说,MAERMSE都可以用来评估回归模型的预测准确性,但是RMSE对异常值更敏感,而MAE对所有个体差异的权重都相等。此外,RMSE通常会大于或等于MAE。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [均方根误差RMSE) 平均绝对误差MAE标准差Standard Deviation)的区别](https://blog.csdn.net/qq_38250124/article/details/88196721)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [常用度量--MAE(平均绝对误差)RMSE(均方根误差)](https://blog.csdn.net/wydbyxr/article/details/82894256)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值