回归三大评价指标均方误差(MSE):均方根误差(RMSE)平均绝对误差(MAE)平均绝对百分比误差 MAPE

本文介绍了回归预测中的三个关键评价指标:平均绝对误差(MAE)、均方误差(MSE)及其平方根——均方根误差(RMSE),以及平均绝对百分比误差(MAPE)。MAE越小,表示模型预测精度越高;MSE和RMSE对异常值更敏感;MAPE是误差的百分比形式,易于理解。文章还提到了Python中计算这些指标的方法。
摘要由CSDN通过智能技术生成

对于回归预测结果,通常会有平均绝对误差、平均绝对百分比误差、均方误差等多个指标进行评价。这里,我们先介绍最常用的3个

 

目录

平均绝对误差(MAE)

均方误差(MSE):均方根误差(RMSE)

平均绝对百分比误差 MAPE


平均绝对误差(MAE)

MAE 的值越小,说明预测模型拥有更好的精确度。The MAE is used to measure the average absolute error between the predicted value and the real value on the experimental data set. For a test set containing n microblog messages, MAE is defined as:

import numpy as np

def mae_value(y_true, y_pred):
    """
    参数:
    y_true -- 测试集目标真实值
    y_p
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾世林jiashilin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值