BZOJ3218 UOJ#77 A+B Problem(最小割+主席树)

竟然在BZOJ上拿了Rank1太给力啦。 p.s.:汗,一发这个就被一堆人在2月27号强势打脸……

传送门(BZOJ)

传送门(UOJ)

说说这道题目吧:

首先是说说这个构图吧。因为有选择关系,我们很容易想到最小割。

Ans = sigma(i为白色){w[i]} + sigma(i为黑色){b[i]} - sigma(奇怪的i){p[i]} 

转化一下就变成了sigma(所有的i){w[i]+b[i]} - sigma(i为白色){b[i]} -sigma(i为黑色){w[i]} - sigma(奇怪的i){p[i]} 

对于每个店S向i连一条容量为b[i]的点(如果满流意味着选择白色), i向T连一条容量为w[i]的点(如果满流意味着选择黑色)

若点i会变得奇怪,我们新建一个点i'来,连一条容量为p[i]的边,表示i变得奇怪,对于范围内的点j,从i'连一条容量为INF的边

然后我们发现边数是O(N^2)的,跑即使是跑网络流这种O(玄学)的算法也不能过的。

所以是不是就没法做了呢?VFK大毒瘤?

其实VFK给我们带来了一片新天地,太神啦,我们可以把边直接连在区间上!!!

考虑用线段树,最底层的节点(表示区间长度为1的)连边向对应的节点,每一层的父亲连向儿子,那么就可以把变数变成O(nlgn)个

就可以跑网络流啦


但是VFK是好(du)人(liu),给我们来了一个只能向编号小的连边,那么就强行可持久化了。

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#define MAXN 5005
#define MAXM 1000005
#define INF 999999999
using namespace std;
struct { int v, nxt, f; } e[MAXM];
int Adj[MAXN * 20], c = -1, n, m, S, T, a[MAXN], b[MAXN], w[MAXN], vd[MAXN * 20];
int L[MAXN], R[MAXN], P[MAXN], Q[MAXN*3], N, Ans, tot, sz, rt[MAXN], d[MAXN * 20], vn;
inline void Add(int u, int v, int f) {
    ++ c; e[c].v = v; e[c].f = f; e[c].nxt = Adj[u]; Adj[u] = c;
    ++ c; e[c].v = u; e[c].f = 0; e[c].nxt = Adj[v]; Adj[v] = c;
}
struct Seg { int lc, rc; } t[MAXN * 20];
inline void GET(int &n) {
    static char c; n = 0;
    do c = getchar(); while('0' > c || c > '9');
    do n=n*10+c-'0', c=getchar(); while('0' <= c && c <= '9');
}
inline int Binary_Search(int p) {
    int l = 1, r = N, mid, ans = 0;
    while(l <= r) {
        mid = (l + r) >> 1;
        if(Q[mid] >= p) { ans = mid; r=mid-1; }
        else l = mid+1;
    }
    return ans;
}
void Link(int rt, int l, int r, int i) {
    if(L[i] > r || l > R[i]) return;
    if(L[i] <= l && r <= R[i]) { Add(n+i, tot+rt, INF); return; }
    int mid = (l + r) >> 1;
    if(t[rt].lc) Link(t[rt].lc, l, mid, i);
    if(t[rt].rc) Link(t[rt].rc, mid+1,r,i);
}
void Insert(int &rt, int p, int l, int r, int i) {
    rt = ++ sz;
    if(l == r) {
        Add(tot + rt, i, INF);
        if(p) Add(tot + rt, tot + p, INF);
        return;
    }
    int mid = (l + r) >> 1;
    if(a[i] <= mid) t[rt].rc = t[p].rc, Insert(t[rt].lc, t[p].lc, l, mid, i);
    else t[rt].lc = t[p].lc, Insert(t[rt].rc, t[p].rc, mid+1, r, i);
    if(t[rt].lc) Add(tot+rt, tot+t[rt].lc, INF);
    if(t[rt].rc) Add(tot+rt, tot+t[rt].rc, INF);
}
int Aug(int u, int augco) {
    if(u == T) return augco;
    int delta, dmin = tot - 1, augc = augco, v;
    for(int i = Adj[u]; ~i; i = e[i].nxt) if(e[i].f) {
        v = e[i].v;
        if(d[v] + 1 == d[u]) {
            delta = Aug(v, min(augc, e[i].f));
            e[i].f -= delta; e[i^1].f += delta;
            augc -= delta;
            if(d[S] >= tot || !augc) return augco - augc;
        }
        if(dmin > d[v]) dmin = d[v];
    }
    if(augco == augc) {
        -- vd[d[u]];
        if(!vd[d[u]]) d[S] = tot;
        ++ vd[d[u] = dmin + 1];
    }
    return augco - augc;
}
int sap() {
    vd[S] = tot; int ans = 0;
    while(d[S] < tot)
        ans += Aug(S, INF);
    return ans;
}
int main() {
    GET(n); memset(Adj, -1, sizeof Adj);
    for(int i = 1; i <= n; ++ i) {
        GET(a[i]); GET(b[i]); GET(w[i]);
        GET(L[i]); GET(R[i]); GET(P[i]);
        Q[++ N] = a[i]; Q[++N] = L[i]; Q[++N] = R[i];
        Ans += b[i] + w[i];
    }
    sort(Q+1, Q+N+1); N = unique(Q+1, Q+N+1) - (Q+1);
    S = 2*n + 1; T = S+1;
    tot = T;
    for(int i = 1; i <= n; ++ i) {
        a[i] = Binary_Search(a[i]);
        L[i] = Binary_Search(L[i]);
        R[i] = Binary_Search(R[i]);
        Add(S, i, b[i]); Add(i, T, w[i]); Add(i, i+n, P[i]);
    }
    for(int i = 1; i <= n; ++ i) {
        if(i > 1) Link(rt[i-1], 1, N, i);
        Insert(rt[i], rt[i-1], 1, N, i);
    }
    tot = tot + sz; vn = tot;
    printf("%d\n", Ans - sap());
    return 0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值