对PCA方法的改进

 最近一直在忙,很少考虑人脸识别方面的东西,主要精力放在了人脸检测上面。我们组深入研究了一下Adaboost算法,OpenCV中便是使用的该方法进行的人脸检测,效果还不错,基本搞清楚。另外对HMM也有一定的了解。

在了解这些东西后,我们又回到了原来的路线上——人脸识别。

接着上次的PCA的讨论,我们认为目前改进该PCA算法的识别率的方法主要是以下方面:

重点解决人脸的大小问题,我们初步设想是在图像检测的时候,框住人脸之前把整个图片进行放大,使得其中的人脸大小基本差不多,这样框出来的人脸效果可能会好一些。

另外我们考虑人眼定位的问题,只需要把人的眼睛找到,再根据人脸与人眼睛之间距离的关系,就可以精确的找到人脸,进而框出人脸。

第三,对HMM进行一定的完善,因为其对光线很敏感,所以对所有的图片进行直方图均衡化。

这是马上就要完成的任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值