利用python进行数据分析
第八章:绘图和可视化
pandas绘图工具
>>> from pandas.plotting import scatter_matrix
>>> from pandas import Series, DataFrame
>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
1,散点图矩阵(Scatter Matrix Plot)
These functions can be imported from pandas.plotting and take a Series or DataFrame as an argument.
利用绘图工具绘图,需要引入pandas.plotting模块,以Series和DataFrame作为参数
>>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])
>>> scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
>>> plt.show()
生成4X4的共16个图片,对角线是密度图,其他的为散点图
2,密度图(Density Plot)
You can create density plots using the Series.plot.kde() and DataFrame.plot.kde() methods
利用Series.plot.kde()或DataFrame.plot.kde()方法绘制密度图
np.random.randn(1000)生成的是一个正太分布曲线
>>> ser = pd.Series(np.random.randn(1000))
>>> ser.plot.kde()
生成一个正太分布曲线图
3,安德鲁斯曲线(Andrews Curves)
Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to visual