python:利用pandas进行绘图(总结)绘图工具

本文详细介绍了如何使用pandas进行数据可视化,包括散点图矩阵、密度图、安德鲁斯曲线、平行坐标、Lag Plot、自相关图、Bootstrap Plot和RadViz等多种绘图工具的使用方法和示例,帮助读者掌握Python数据分析的可视化技巧。
摘要由CSDN通过智能技术生成

利用python进行数据分析

第八章:绘图和可视化

pandas绘图工具

>>> from pandas.plotting import scatter_matrix
>>> from pandas import Series, DataFrame
>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib.pyplot as plt

1,散点图矩阵(Scatter Matrix Plot)

These functions can be imported from pandas.plotting and take a Series or DataFrame as an argument.
利用绘图工具绘图,需要引入pandas.plotting模块,以Series和DataFrame作为参数
>>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])
>>> scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
>>> plt.show()
生成4X4的共16个图片,对角线是密度图,其他的为散点图

2,密度图(Density Plot)

You can create density plots using the Series.plot.kde() and DataFrame.plot.kde() methods
利用Series.plot.kde()或DataFrame.plot.kde()方法绘制密度图
np.random.randn(1000)生成的是一个正太分布曲线
>>> ser = pd.Series(np.random.randn(1000))
>>> ser.plot.kde()
生成一个正太分布曲线图

3,安德鲁斯曲线(Andrews Curves)

Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to visual

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值