
数学:算法工程师的基本修养
在这个人工智能看起来要席卷一切的年代,正在或者立志于在AI领域做技术工作的人,有必要从原理角度了解一下机器学习、深度学习是干什么的,如何起到作用的。我们应做到了解原理,定位AI为一个学术研究领域,目前在工业界有一定的应用和探索,对其可学、可用、可研究。此为从业者的基本修养。
不完美先生_
西安电子科技大学星智云图工作室(StarImagine Studio of Xidian University)。
展开
-
常用向量相似度衡量指标
1、欧氏距离(Euclidean Distance )欧氏距离是最容易直观理解的距离度量方法:(1)二维平面上点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:(3)n维空间点a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的欧氏距离(两个n维向量):2、余弦相似度(Cosine similarity)余弦相似度是通过测量两个向量之间的夹角的余弦值来度量他们之间的一个相似度。0原创 2020-12-02 08:05:13 · 9294 阅读 · 0 评论 -
图像种类介绍:RGB图像、全色图像、高/多光谱图像
转载自:https://blog.csdn.net/Chaolei3/article/details/79404806RGB 图像首先提出一个问题可以通过 RGB 图像恢复高光谱图像吗? 一句话就是 RGB 图像本身就不包含高光谱的信息,自然也就无法通过图像处理从 RGB 图像恢复到高光谱图像。换句话说,普通的光学相机在自然光下拍的照片不包含完整的光谱信息。波长与光看一幅波长与...转载 2018-11-27 08:27:17 · 5866 阅读 · 0 评论 -
深度学习基础概念(二)(科普入门)
1、人工智能(AI)、机器学习(ML)和深度学习(DL): 人工智能是终极目标,机器学习是实现人工智能的一种分支,深度学习隶属于人工神经网络体系,人工神经网络是基于统计的机器学习方法,传统的神经网络是一种浅层机器学习,深度学习是传统神经网络发展下的新一代神经网络。深度学习是通过建立、模拟人脑的信息处理神经结构来实现对外部输入的数据进行从低级到高级的特征提取,从而能够使机器理解学习数据...原创 2018-07-14 21:08:30 · 2082 阅读 · 0 评论 -
深度学习基础概念(一)(科普入门)
1、深度学习(Deep Learning): 是建立在计算机神经网络理论和机器学习理论上的系统科学,它使用建立在复杂的机器结构上的多处理层,结合非线性转换方法算法,对高层复杂数据模型进行抽象。 深度学习有两大要素: (1)数据表示:数据是机器学习的基本要素,也是神经输入网进行反馈的源头。数据的表示和建模对深度学习的性能有着很大的影响。目前关于数据表示,有局部表示、分布...原创 2018-07-14 21:05:28 · 1318 阅读 · 0 评论