
目标检测:实战经验与心得
在目标检测领域,各路大神用各种网络刷新我们的思路。R-CNN系、SSD系和YOLO系等主干网络,ResNet、FPN、RFBNet等辅助网络,Soft-NMS、RetinaNet等改进策略,在公开数据集上取得了不俗效果。在复现这些成果时会遇到不少细节问题与感悟,记录于此。
不完美先生_
西安电子科技大学星智云图工作室(StarImagine Studio of Xidian University)。
展开
-
基于深度学习的目标检测:数据增强(一)图像翻转、图像旋转、图像放缩
1.数据增强简介数据增强(data augmentation),又名数据增广或数据扩充,其本质是通过使用图像处理方法,基于有限的数据产生更多的数据,以此增加训练样本的数量以及多样性,进而提升模型的泛化能力和鲁棒性。本篇主要涉及到的知识点有: 数据增强的定义:明晰数据增强技术的原理及其在深度学习中的意义。 数据增强的方法:学会使用图像处理方法实现对于数据集中的样本扩充。 图像源扩充方法:学会通过与训练或扩充图像源的方式实现训练数据增强。 说明:数据增强的对象是已有的训练样原创 2020-07-31 10:02:03 · 16186 阅读 · 2 评论 -
在Darknet环境下训练MS COCO 2017数据集(目标检测)(YOLOv3)
COCO 数据集是一个大型数据集,里面包含了包括 object detection, keypoints estimation, semantic segmentation,image caption 等多个任务所需要的图像数据及其标注信息。以MS COCO 2017为例,一共 25G 左右的图片和 1.5G 左右的 annotation 文件,annotation 文件的格式为 .json ...原创 2019-02-14 20:42:26 · 10015 阅读 · 9 评论 -
YOLOv3计算mAP教程(简单有效)
mAP指标回顾YOLOv3计算mAP指标,分为两步:一、对测试集生成检测结果文件:./darknet detector valid cfg/voc.data cfg/yolov3.cfg results/yolov3.weights -out [文件名] -thresh .5此命令输出的 .txt 文件会按照类别名称存放在results 下,比如:以三类别为例(airplane...原创 2018-12-04 23:01:42 · 20020 阅读 · 38 评论 -
目标检测指标细究:精确度(Precision)、召回率(recall)、虚警率(False Alarm)
1、目标检测中的“样本”概念:并非groundtruth,也非图片。指的是真正投入网络参与loss计算及其正反向传播的边界框,这些框是算法根据groundtruth预测出来的。框中有样本且类别正确则为正样本,框中无样本或样本类别错误则为负样本。在one-stage算法中的样本就是正负比为1:3的Regin Proposals,在SSD中就是正负比为1:3的Prior boxes,在YOLOv1...原创 2018-12-03 18:11:29 · 11161 阅读 · 2 评论 -
YOLOv3细节探究(长期持续更新)
1、更改bbox的线宽,在src文件夹中的image.c文件里的draw_detections函数里,"int width = im.h * 0.002 ”,更改此数值可以达到目的。2、V3中的shortcut层,与resnet层略有区别,算是结合了resnet的两种形式,采用两层卷积实现。3、V3中采用的特征融合与FPN略有区别,FPN采用的是点加+卷积激活,v3采用的是堆积+卷积激活。...原创 2018-11-29 23:34:11 · 1890 阅读 · 2 评论 -
目标检测中的易混淆概念与细节问题
在学习目标检测的过程中,遇到很多含混不清的的概念,记录下来,与大家交流,欢迎留言讨论。1、目标检测中的 正/负样本:样本即预测出来的box。Faster R-CNN中的anchor boxes以及SSD中的特征图中的default boxes,这些框中的一部分被选为正样本(正确识别目标),一部分被选为负样本(出现误检),另外一部分被当作背景或者不参与运算。不同的框架有不同的策略,大致筛选策...原创 2018-11-27 09:10:20 · 1032 阅读 · 0 评论 -
图像种类介绍:RGB图像、全色图像、高/多光谱图像
转载自:https://blog.csdn.net/Chaolei3/article/details/79404806RGB 图像首先提出一个问题可以通过 RGB 图像恢复高光谱图像吗? 一句话就是 RGB 图像本身就不包含高光谱的信息,自然也就无法通过图像处理从 RGB 图像恢复到高光谱图像。换句话说,普通的光学相机在自然光下拍的照片不包含完整的光谱信息。波长与光看一幅波长与...转载 2018-11-27 08:27:17 · 5866 阅读 · 0 评论 -
目标检测评价指标:mAP、Precision、Recall、AP、IOU等
目标检测评价指标: 准确率 (Accuracy),混淆矩阵 (Confusion Matrix),精确率(Precision),召回率(Recall),平均正确率(AP),mean Average Precision(mAP),交除并(IoU),ROC + AUC,非极大值抑制(NMS)。假设原始样本中有两类,其中: 1:总共有 P 个类别为 1 的样本,假设类别 1 为正例。 ...原创 2018-11-26 08:16:57 · 19001 阅读 · 1 评论 -
YOLOv3 学习笔记:大神好贴汇总+自身经验记录
转载自可爱的实验室大神师姐,原文地址:https://blog.csdn.net/u011649150/article/details/81038645一、学习 YOLOv3YOLOv3论文YOLOv3:An Incremental Improvement 全文翻译【目标检测简史】进击的 YOLOv3,目标检测网络的巅峰之作语言生动易懂,适合新手学习,有很多实测的图,效果非常好...转载 2018-11-24 10:20:09 · 4985 阅读 · 1 评论 -
高光谱图像处理之目标检测技术(CEM算法)(图像处理)
高光谱图像处理之目标检测技术一、高光谱图像处理之目标检测1、高光谱图像目标检测的发展趋势和研究现状: 20世纪80年代末,美国的一些研究机构开始利用高光谱图像数据进行目标检测方面的研究。自上世纪九十年代,国外出现了进行高光谱图像目标检测算法理论研究的研究组。由Reed和Yu提出了基于广义似然比检验的恒虚警RX 检测器(RXD)。Chang课题组提出了基于正交子空间投影的OSP检测方法, Har...原创 2018-04-18 20:02:11 · 29020 阅读 · 40 评论