第G8周:ACGAN任务

本文详细介绍了如何使用ACGAN(辅助分类生成对抗网络)在PyTorch中构建和训练模型,包括生成器和判别器的设计,以及如何处理额外的类别标签。通过实例展示了如何配置网络结构、损失函数和优化器,以生成特定类别的合成图像。
摘要由CSDN通过智能技术生成

参考论文
这周主要任务就是根据之前GAN,CGAN,SGAN网络架构搭建起ACGAN。
在这里插入图片描述

GAN: 传统的GAN结构由两部分组成:生成器(G)和判别器(D)。生成器接收一个随机噪声向量(z),并试图生成看起来真实的数据(G(z))。判别器的任务是分辨输入是来自真实数据集(Real)还是生成器产生的伪造数据(Fake)。生成器和判别器通过对抗过程进行训练,生成器努力生成更真实的数据,而判别器则努力更好地分辨真假。

CGAN: 条件生成对抗网络在传统GAN的基础上增加了条件变量(c),这允许模型生成特定条件下的数据。在CGAN中,生成器和判别器都接收条件变量作为额外输入。

SGAN: 半监督生成对抗网络用于半监督学习情境,其中判别器不仅需要判断输入是真是假,还需要进行类别标注。SGAN的判别器输出除了真假判断外,还包括类别标签(c)。

ACGAN: 辅助分类生成对抗网络同样处理额外的类别标签。ACGAN中的生成器接收随机噪声(z)和类别标签(c),生成特定类别的数据。判别器除了判断真实性外,还需要对生成的数据进行分类。

在这里插入图片描述
判别损失与CGAN并无区别,核心的是分类损失。
给出代码:

import argparse
import os
import numpy as np
 
import torchvision.transforms as transforms
from torchvision.utils import save_image
 
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
 
import torch.nn as nn
import torch
 
# 创建用于存储生成图像的目录
os.makedirs("images", exist_ok=True)
 
# 解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="训练的总轮数")
parser.add_argument("--batch_size", type=int, default=64, help="每个批次的大小")
parser.add_argument("--lr", type=float, default=0.0002, help="Adam优化器的学习率")
parser.add_argument("--b1", type=float, default=0.5, help="Adam优化器的一阶动量衰减")
parser.add_argument("--b2", type=float, default=0.999, help="Adam优化器的二阶动量衰减")
parser.add_argument("--n_cpu", type=int, default=8, help="用于批次生成的CPU线程数")
parser.add_argument("--latent_dim", type=int, default=100, help="潜在空间的维度")
parser.add_argument("--n_classes", type=int, default=10, help="数据集的类别数")
parser.add_argument("--img_size", type=int, default=32, help="每个图像的尺寸")
parser.add_argument("--channels", type=int, default=1, help="图像通道数")
parser.add_argument("--sample_interval", type=int, default=400, help="图像采样间隔")
opt = parser.parse_args()
print(opt)
 
# 检查是否支持GPU加速
cuda = True if torch.cuda.is_available() else False
 
# 初始化神经网络权重的函数
def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
        torch.nn.init.constant_(m.bias.data, 0.0)
 
# 生成器网络类
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
 
        # 为类别标签创建嵌入层
        self.label_emb = nn.Embedding(opt.n_classes, opt.latent_dim)
 
        # 计算上采样前的初始大小
        self.init_size = opt.img_size // 4  # Initial size before upsampling
 
        # 第一层线性层
        self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))
 
        # 卷积层块
        self.conv_blocks = nn.Sequential(
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 128, 3, stride=1, padding=1),
            nn.BatchNorm2d(128, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(128, 64, 3, stride=1, padding=1),
            nn.BatchNorm2d(64, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
            nn.Tanh(),
        )
 
    def forward(self, noise, labels):
        # 将标签嵌入到噪声中
        gen_input = torch.mul(self.label_emb(labels), noise)
 
        # 通过第一层线性层
        out = self.l1(gen_input)
 
        # 重新整形为合适的形状
        out = out.view(out.shape[0], 128, self.init_size, self.init_size)
 
        # 通过卷积层块生成图像
        img = self.conv_blocks(out)
        return img
 
# 判别器网络类
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
 
        # 定义判别器块的函数
        def discriminator_block(in_filters, out_filters, bn=True):
            """返回每个判别器块的层"""
            block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
            if bn:
                block.append(nn.BatchNorm2d(out_filters, 0.8))
            return block
 
        # 判别器的卷积层块
        self.conv_blocks = nn.Sequential(
            *discriminator_block(opt.channels, 16, bn=False),
            *discriminator_block(16, 32),
            *discriminator_block(32, 64),
            *discriminator_block(64, 128),
        )
 
        # 下采样后图像的高度和宽度
        ds_size = opt.img_size // 2 ** 4
 
        # 输出层
        self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())
        self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.n_classes), nn.Softmax())
 
    def forward(self, img):
        out = self.conv_blocks(img)
        out = out.view(out.shape[0], -1)
        validity = self.adv_layer(out)
        label = self.aux_layer(out)
 
        return validity, label
 
# 损失函数
adversarial_loss = torch.nn.BCELoss()
auxiliary_loss = torch.nn.CrossEntropyLoss()
 
# 初始化生成器和判别器
generator = Generator()
discriminator = Discriminator()
 
if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()
    auxiliary_loss.cuda()
 
# 初始化权重
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
 
# 配置数据加载器
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "../../data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)
 
# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
 
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
 
# 保存生成图像的函数
def sample_image(n_row, batches_done):
    """保存从0到n_classes的生成数字的图像网格"""
    # 采样噪声
    z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))))
    # 为n行生成标签从0到n_classes
    labels = np.array([num for _ in range(n_row) for num in range(n_row)])
    labels = Variable(LongTensor(labels))
    gen_imgs = generator(z, labels)
    save_image(gen_imgs.data, "images/%d.png" % batches_done, nrow=n_row, normalize=True)
 
# ----------
# 训练
# ----------
 
for epoch in range(opt.n_epochs):
    for i, (imgs, labels) in enumerate(dataloader):
 
        batch_size = imgs.shape[0]
 
        # 真实数据的标签
        valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
        # 生成数据的标签
        fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)
 
        # 配置输入
        real_imgs = Variable(imgs.type(FloatTensor))
        labels = Variable(labels.type(LongTensor))
 
        # -----------------
        # 训练生成器
        # -----------------
 
        optimizer_G.zero_grad()
 
        # 采样噪声和标签作为生成器的输入
        z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
        gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))
 
        # 生成一批图像
        gen_imgs = generator(z, gen_labels)
 
        # 损失度量生成器的欺骗判别器的能力
        validity, pred_label = discriminator(gen_imgs)
        g_loss = 0.5 * (adversarial_loss(validity, valid) + auxiliary_loss(pred_label, gen_labels))
 
        g_loss.backward()
        optimizer_G.step()
 
        # ---------------------
        # 训练判别器
        # ---------------------
 
        optimizer_D.zero_grad()
 
        # 真实图像的损失
        real_pred, real_aux = discriminator(real_imgs)
        d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2
 
        # 生成图像的损失
        fake_pred, fake_aux = discriminator(gen_imgs.detach())
        d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, gen_labels)) / 2
 
        # 判别器的总损失
        d_loss = (d_real_loss + d_fake_loss) / 2
 
        # 计算判别器的准确率
        pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)
        gt = np.concatenate([labels.data.cpu().numpy(), gen_labels.data.cpu().numpy()], axis=0)
        d_acc = np.mean(np.argmax(pred, axis=1) == gt)
 
        d_loss.backward()
        optimizer_D.step()
 
        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item())
        )
        batches_done = epoch * len(dataloader) + i
        if batches_done % opt.sample_interval == 0:
            sample_image(n_row=10, batches_done=batches_done)
  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值