码农男孩
码龄1年
  • 84,772
    被访问
  • 43
    原创
  • 43,435
    排名
  • 336
    粉丝
  • 30
    铁粉
关注
提问 私信

个人简介:研究生在读,分享深度学习、机器学习、计算机视觉、图像处理等相关文章和学习笔记,不定时分享代码资源。期待关注

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2021-09-21
博客简介:

l love CV

查看详细资料
  • 4
    领奖
    总分 957 当月 25
个人成就
  • 获得217次点赞
  • 内容获得111次评论
  • 获得529次收藏
创作历程
  • 43篇
    2022年
  • 1篇
    2021年
成就勋章
TA的专栏
  • 机器学习
    9篇
  • opencv
    6篇
  • 图像分割
    5篇
  • GANs
    13篇
  • 深度学习
    10篇
兴趣领域 设置
  • 人工智能
    超分辨率重建目标检测图像处理深度学习opencv计算机视觉生成对抗网络
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

用脚本下载数据集时,怎么更改数据集的下载位置啊?老是下载到C盘里面。

发布问题 2022.07.22 ·
2 回答

[ KO机器学习] Day9 模型评估:余弦距离的应用

本章的主题是模型评估,但其实在模型训练过程中,我们也在不断地评估着样本间的距离,如何评估样本距离也是定义优化目标和训练方法的基础。在机器学习问题中,通常将特征表示为向量的形式,所以在分析两个特征向量之问的相似性时,常使用余弦相似度来表示。余弦相似度的取值范围是 [-1,11,相同的两个向量之间的相似度为 1。如果希望得到类似于距离的表示,将1减去余弦相似度即为余弦距离因此,余弦距离的取值范围为[0,2],相同的两个向量余弦距离为 0。
原创
发布博客 2022.05.07 ·
114 阅读 ·
1 点赞 ·
1 评论

接下来更新缺陷检测的内容吧,要做这部分课题了

发布动态 2022.05.06

[KO机器学习] Day8 模型评估:ROC曲线

场景描述二值分类器(Binary Classifier)是机器学习领域中最常见也是应用最广泛的分类器。评价二值分类器的指标有很多。比如精确率、召回率、F1 score、P-R曲线等。上一篇已经对这些指标做了一定的介绍,但也发现这些指标或多或少只能反映模型在某一方面的性能。相比而言,ROC曲线则有很多优点、经常作为评估二值分类器最重要的指标之一。下面我们一起来详细了解一下ROC曲线的绘制方法和特点知识点:ROC曲线、曲线下的面积(Area Under Curve,AUC)、P - R曲线问题1:什
原创
发布博客 2022.05.06 ·
723 阅读 ·
2 点赞 ·
0 评论

组会汇报每次都是突袭

发布动态 2022.05.05

[KO机器学习] Day 7 模型评估:评估指标的局限性

“没有测量,就没有科学。。” 这是科学家门捷列夫的名言。在计算机科学特别是机器学习领域中,对模型的评估同样至关重要。只有选择与问题相匹配的评估方法,才能快速地发现模型选择或训练过程中出现的问题,迭代地对模型进行优化。模型评估主要分为离线评估和在线评估两个阶段。针对分类排序、回归、序列预测等不同类型的机器学习问题,评估指标的选择也有所不同。知道每种评估指标的精确定义、有针对性地选择合适的评估指标、根据评估指标的反馈进行模型调整,这些都是机器学习在模型评估阶段的关键问题,也是一名合格的算法工程师应当具备的基本功
原创
发布博客 2022.05.05 ·
524 阅读 ·
1 点赞 ·
1 评论

图像分割与提取:交互式前景提取(附OpenCV代码实现)

一、简介经典的前景提取技术主要使用纹理(颜色)信息,如魔术棒工具,或根据边缘(对比度)信息,如智能剪刀等完成。2004 年,微软研究院(剑桥)的 Rother 等人在论文 GrabCut: Interactive Foreground Exiraction Using lrerated Graph Cuts 中提出了交互式前景提取技术。他们提出的算法,仅需要做很少的交互操作,就能够准确地提取出前景图像。二、前景提取 在开始提取前景时,先用一个矩形框指定前景区域所在的大...
原创
发布博客 2022.05.05 ·
300 阅读 ·
3 点赞 ·
1 评论

连着发了两条BLink都审核不通过,你没事吧官方!!!

发布动态 2022.05.04

[KO机器学习] Day6:特征工程 图像数据不足时的处理方法

在机器学习中,绝大部分模型都需要大量的数据进行训练和学习(包括有监督学习和无监督学习),然而在实际应用中经常会遇到训练数据不足的问题。比如图像分类、作为计算机视觉最基本的任务之一,其目标是将每幅图像划分到指定类别集合中的一个或者多个类别中。当训练一个图像分类模型时,如果训练样本比较少,该如何处理呢?知识点:迁移学习(Transfer Learning),生成对抗网络,图像处理,上采样技术,数据扩充。
原创
发布博客 2022.05.04 ·
63 阅读 ·
2 点赞 ·
2 评论

(附代码)ResNet网络架构搭建以及基于数据集CIFAR-10对ResNet进行训练

何凯明大神在CVPR 2016上发表的《Deep Residual Learning for Image Recognition 图像识别中的深度残差学习网络》深受工业界的欢迎,自提出以来已经成为工业界最受欢迎的卷积神经网络结构。在coco目标检测任务中提升28%的精度,并基于ResNet夺得ILSVRC的检测、定位,COCO 的检测和分割四大任务的冠军。接下来就一起来看这个广受好评的Resnet
原创
发布博客 2022.05.03 ·
883 阅读 ·
1 点赞 ·
0 评论

[KO机器学习] Day5 特征工程:文本表示模型和Word2Vec

文本是一类非常重要的非结构化数据,如何表示文本数据一直是机器学习领域的一个重要研究方向。谷歌2013年提出的Word2Vec是目前最常用的词嵌入模型之一,Word2Vec 实际是一种浅层的神经网络模型,它有两种网络结构,分别是CBOW( Continues Bags Of Words)和 Skip-gram。知识点难度:★★☆☆☆ 词袋模型(Bag of Words),TF-IDF(Term Frequency - Inverse Document Frequency),主题模型(Topic Mod
原创
发布博客 2022.05.03 ·
162 阅读 ·
2 点赞 ·
0 评论

OpenCV进行图像分割:分水岭算法(相关函数介绍以及项目实现)

在图像处理的过程中,经常需要从图像中将前景对象作为目标图像分割或者提取出来。图像分割是图像处理过程中一种非常重要的操作。分水岭算法将图像形象地比喻为地理学上的地形表面,实现图像分割,该算法非常有效。二、算法原理任何一幅灰度图像,都可以被看作是地理学上的地形表面,灰度值高的区域可以被看成是山峰,灰度值低的区域可以被看成是山谷。如下图所示,其中左图是原始图像,右图是其对应的“地形表面”。如果我们向每一个山谷中“灌注”不同颜色的水(这里采用了OpenCV官网的表述,冈萨雷斯将灌注表述为在山谷中打洞
原创
发布博客 2022.05.02 ·
2677 阅读 ·
4 点赞 ·
2 评论

一周精选上榜啦,虽然我很迷惑他的评判机制是什么。别的文章也上上热榜吧,官方我奉劝你!是不是别人不生气把别人当傻子,给我推推流量!!

发布动态 2022.05.02

采用在Imagenet上预训练的VGG16模型进行分类测试

采用在Imagenet上预训练的VGG16模型进行分类测试
原创
发布博客 2022.05.02 ·
271 阅读 ·
6 点赞 ·
4 评论

浅浅纪念一下吧

发布动态 2022.05.02

[KO机器学习] Day4 特征工程:如何有效地找到组合特征?

本文介绍一种基于决策树的特征组合寻找方法(关于决策树的详细内容过段时间为大家更新)。以点击预测问题为例,假设原始输入特征包含年龄、性别、用户类型(试用期、付费)、物品类型(护肤、食品等)4个方面的信息,并且根据原始输入和标签( 点击 / 未点击 )构造出了决策树,如下图所示。
原创
发布博客 2022.05.02 ·
756 阅读 ·
6 点赞 ·
3 评论

深度学习图像分类网络(二):GoogLeNet(V1-V4)模型搭建解读(附代码实现)

GoogLeNetV1-V4的模型结构都不是很简洁,参数设置上也没有什么规律可循,都是他们从大量实验中证明得到的。整体架构但是不难理解,都是重复的模块进行堆叠,所以理解了每一块的作用,整体来看就很简单。希望大家保持头脑清醒,否则觉得这一块的东西很混乱。V1、V2目前很少使用,V3、V4是使用最多的,本文主要讲解GoogLeNet - V4。正式介绍V4之前,一起回顾GoogLeNet V1-V3。
原创
发布博客 2022.05.01 ·
1448 阅读 ·
11 点赞 ·
9 评论

好像放假了又好像没放假

发布动态 2022.05.01

[KO机器学习] Day3 特征工程: 什么是组合特征?如何处理高维组合特征?

什么是组合特征?如何处理高维组合特征?难度:★★☆☆☆分析与解答:为了提高复杂关系的拟合能力,在特征工程中经常会把一阶离散特征两两组合,构成高阶组合特征。以广告点击预估问题为例,原始数据有语言和类型两种离散特征。表1.2是语言和类型对点击的影响。为了提高拟合能力,语言和类型可以组成二阶特征,表1.3是语言和类型的组合特征对点击的影响。
原创
发布博客 2022.05.01 ·
343 阅读 ·
5 点赞 ·
1 评论

图像处理:Canny边缘检测原理(附代码实现)

Canny 边缘检测是一种使用多级边缘检测算法检测边缘的方法OPENCV提供了函数cv2.Canny( )实现Canny边缘检测,虽然opencv为我们提供了很方便的使用,但是我们还是要理解Canny边缘检测的原理。Canny边缘检测分为如下几个步骤:步骤1:去噪。噪声会影响边缘检测的准确性,因此首先要将噪声过滤掉。 步骤2:计算梯度的幅度与方向。 步骤3:非极大值抑制,即适当的让边缘变瘦。 步骤4:确定边缘。使用双阈值算法确定最终的边缘信息。下面对上述步..
原创
发布博客 2022.05.01 ·
134 阅读 ·
3 点赞 ·
2 评论
加载更多