德布罗意波与神经网络与粒子

本文探讨了神经网络分类过程与量子力学中波函数坍缩的相似性,提出将神经网络输入视为波,其分类过程即为波的粒子化,这与量子力学原理相呼应,提供了一种新颖的视角理解神经网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

德布罗意指出了怎样才能把波和粒子二者联系起来,他提出了一个波函数,这个波函数通常表示为

单个粒子的应是粒子的三个坐标x1,x2,x3以及时间t的函数,也就是

德布罗意建立了一个用Ψ描述的波所遵守的方程.

这个波动方程表明:如果有一些平面波在确定的方向上传播,并且具有确定的频率,那么这些波便对应干一个具有确定动量和能量的粒子。

---狄拉克《量子力学的发展》

 

由量子力学,有频率的波都有一种物质化的粒子的存在形态,比如将神经网络的输入mnist的5000张不同的1或者0,这些图片形态上的变化当然可以用起伏波动的波来描述。如果将这些图片理解成是一种波的载体,按照量子力学可以预期这些波也可以有一种物质化的存在形式。

 

假设所谓的物质就是可被分类的对象,而微观粒子是物质的载体,则微观粒子当然也有可被分类的属性。而神经网络可以赋予被分类对象以可被分类的属性,由此推断一个二分类神经网络收敛过程可以理解成是创造了两个可被分类的微观粒子。比如将0和1的图片混在一起这个网络可以分出这个是0粒子还是1粒子。

 

如果将神经网络的输入图片理解成是一种波,而最终实现了分类是完成了波的粒子化,则按照量子力学的理论这个过程就是波函数的坍缩。或者至少用波函数的坍缩来理解神经网络的分类过程在逻辑上很自洽。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值