关于神经网络的两个假设
假设1:完全相同的两个对象无法被分成两类,与之对应的分类迭代次数为无穷大,分类准确率是50%,50%。在不同的训练集之间,相等收敛标准下迭代次数越大表明两个分类对象差异越小。
假设2:对应不同的两个对象,迭代次数越大,二者的相对速度越大;相对速度越大分类准确率越大。
继续用粒子分裂模型来理解神经网络的分类行为,
(A,B)---n*m*2---(1,0)(0,1)
将神经网络的分类准确率理解成正比于粒子A与B的相对速度。容易证实mnist的0,1很容易达到分类准确率100%,而mnist的0,2就要困难的多。也就意味这0和1的相对速度可以达到最大值光速,而0和2的相对速度只能达到近光速。
假设粒子0的质量在两个分类体系中是不变的,则这个结果就意味着2的质量大于1。
所以粒子2的质量应该是多少?
做另一个网络
(A:mnist 0+x%1,B:mnist 1+x%0)-n*m*k-(1,0)(0,1) δ①n(x)
同样是一个二分类网络分类0和1,区别是向0里加入x%的1,向1中加入x%的0。当x=50的时候意味着A=B,迭代次数为无限大。如果x逐渐的减小,训练集差异会增加迭代次数会减小。
(0 ,1)-n*m*k-(1,0)(0,1) δ③ n1
(0 ,2)-n*m*k-(1,0)(0,1) δ② n2
因此现在有了三个网络,他们的收敛标准δ相同,假设网络①②③的迭代次数分别是n(x),n1,n2。现在只要适当的调整x可以让n(x)等于任意[n1,+oo)之间的值,其中一定存在一个值使得:n(x)=n2,
则粒子2的质量正比与x。用这种办法可以等效的测量出所有训练集的质量。
由网络①和假设1可以推导出当x不断的变大的时候对应的质量是变大的,假设当x=0对应一个无质量粒子,则得到假设3
假设3:质量正比于两个训练集数据的等效交叉程度。
按照物理规则,有质量的物体永远也不能被加速到光速,因此假设3是否与物理矛盾?
按照假设3,构造两个有质量的粒子,向训练集0中加一张1,向训练集1中加一张0.
A:mnist0+1张1
B:mnist1+1张0
(A ,B)-n*m*k-(1,0)(0,1) ④
网络④的分类准确率应该永远也不会达到100%,否则将出现0==0&&0==1的逻辑矛盾。因此这个假设并不违背这条物理定律。
再比如如果网络①的x=50,对应的迭代次数是无限大,是否应该解释成对应一个无限大的质量?如果考虑量子遂穿效应x不可能永远严格的等于50,也就是意味着没有质量无限大矛盾。
或者尽管可以通过网络①的x的适当调整,求出2的等效质量,但如果迭代次数足够大网络②的分类准确率可能=100%,是否意味这2是一个无质量粒子?
比如加速一个有质量粒子到接近光速,这个粒子的质量会无限的变大。所以为什么不能假设继续给这个粒子无限大的能量这个粒子的质量会变成0?否则如何加速一个无质量粒子到光速?