用神经网络分类集合{x|x∈x}与集合{x|x ∉x}

罗素悖论:一个只为不给自己理发的人理发的理发师,是否应该给自己理发?

 

这个理发师无论是否给自己理发都将与自己的行为逻辑相矛盾。

如果有两个集合

A:{x|x ∈x} {我}

B:{x|x ∉x} {非我即我}

(A,B)—n*m*k—(1,0)(0,1)

 

用一个网络来分类A和B,这个网络一定是可以分类的,因为A永远也不等于B。如果将A和B看作是两个粒子,将为自己理发看作是引力,不为自己理发看作是斥力。则A和B将由吸引而排斥,由排斥而吸引。或者A与B将永远吸引终将排斥的,永远排斥终将吸引的。

 

这个行为逻辑和核力的作用逻辑是一样的,两个核子距离近将排斥而距离远又将吸引。由此假设两个核子就是在回答我与非我即我到底如何分类的问题。这个网络的分类准确率恒为50%,50%,这个结果意味着完全相同的对象不能被分成两类,但是不能被分成两类的对象不必然是同一类对象。

 

核力表达了我与非我即我的二重态

(我,非我即我)—n*m*k—(1,0)(0,1)  50% ,50%

 

考虑核力的一维假设,核子就是处于一维空间中永恒在回答我与非我即我到底是不是同一个对象的逻辑问题的载体。如果假设是核力使距离的对称性破缺得以产生一维空间,则可以推出是逻辑上类似:我是谁和谁是我的无解问题最终导致一维空间的产生,并以核力的形式被持续表达并使一维空间得以稳定存在。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值