CNDO-INTGRL-SS-BINTGS-斯莱特轨道指数--- 精确方法

因为上一节得到的递推方法有精度误差,因此需要得到计算这个积分的精确的方法,

Approximate Molecular Orbital Theory by Pople John A., Beveridge David L.p182

由python

print (  (sympy.integrate(  x**k*exp(-p*x)  ,( x, -1 , 1   ) ) )  )得到

-k*p**(-k)*gamma(k + 1)*lowergamma(k + 1, -p)/(p*gamma(k + 2)) + k*p**(-k)*gamma(k + 1)*lowergamma(k + 1, p)/(p*gamma(k + 2)) - p**(-k)*gamma(k + 1)*lowergamma(k + 1, -p)/(p*gamma(k + 2)) + p**(-k)*gamma(k + 1)*lowergamma(k + 1, p)/(p*gamma(k + 2))

经化简

 

所以对应的程序是

public static  void BINTGS140( double ρ, int i0,int k,int last, double []b   ) throws IOException, ParseException {
				for(int i=i0;i<k+1;i++) {
					double yt=0.0;
					
					for(int m=i0 ;m<last+1 ;m++) {
						
	    yt=yt+Math.pow((-ρ),m )*(1-  Math.pow((-1) , (m+i+1) )    )  /( FACT(m)*(double)(m+i+1));
			 b[i]=yt;
					 
			
					}
						
				}
				
			}

验算

double []b=new double[17];

BINTGS140(  0.6 , 0 ,13 ,17 , b   ) = -0.08430403604574815

wolframalpha

Integrate[ x**13*exp(-0.6*x),{x,-1,1}]=-0.084304036045748143556492453678859949065231785751955121973510012...

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值