轨道半径对氦原子基态能级的影响He

本文探讨了He原子中电子轨道参数a0变化对基态能级E的影响,通过数学模型计算并绘制图表,揭示了势能、动能与总能量的动态关系。关键发现包括E的最小值点、正负能区以及动能/势能比的特殊值。计算精度的提升说明了方法的有效性。
摘要由CSDN通过智能技术生成

设He原子的两个核外电子的轨道分别是

 

He原子的基态能级为

其中a0是半径,让a0由0.2增加到2.2步长是0.01,看看a0的变化对E有什么影响

得到的数据画成图

当a0=1.19时,E取最小值,E=-2.8476

当a0<0.59时,E为正,a0越小E越大

仅当a0=1时,动能/势能=-0.5,此时E=-2.75

随着a0的增加,动能和相互作用能都在减小,势能增加

He原子的基态能级为-2.90,这个方法得到的计算数值是实验值的98.19%。

对比前述用类氢轨道得到的-2.75(94.8%)计算精度提高了3.37%。

import csv

import sympy
import math
from sympy import symbols, cancel, Li

a = sympy.Symbol('a')
e = sympy.Symbol('e')
m = sympy.Symbol('m')
h = sympy.Symbol('h')
l = sympy.Symbol('l')
lp = sympy.Symbol('lp')
r = sympy.Symbol('r')
EE = sympy.Symbol('EE')
r1 = sympy.Symbol('r1')
r2 = sympy.Symbol('r2')
r3 = sympy.Symbol('r3')

a0 = sympy.Symbol('a0')

x = sympy.Symbol('x')
y = sympy.Symbol('y')
z = sympy.Symbol('z')

θ1= sympy.Symbol('θ1')
θ2= sympy.Symbol('θ2')
Φ1= sympy.Symbol('Φ1')
Φ2= sympy.Symbol('Φ2')

θ= sympy.Symbol('θ')
Ψ= sympy.Symbol('Ψ')
Φ= sympy.Symbol('Φ')
pi=sympy.Symbol('pi')
E=sympy.Symbol('E')
I=sympy.Symbol('I')
sin=sympy.Symbol('sin')
cos=sympy.Symbol('cos')
diff=sympy.Symbol('diff')
integrate=sympy.Symbol('integrate')

pi=sympy.pi
E=sympy.E
sin=sympy.sin
cos=sympy.cos
diff=sympy.diff
integrate=sympy.integrate



def jin (fr1 ,fr2 ):


    f21 = fr1 * fr2 * (1 / r1) * fr1 * fr2 * r1 * r1 * r2 * r2

    f22 = fr1 * fr2 * (1 / r2) * fr1 * fr2 * r1 * r1 * r2 * r2

    f23 = (integrate(f21, (r2, 0, r1)))

    f24 = (integrate(f22, (r2, r1, float('inf'))))

    f25 = (16 * pi ** (2) * integrate(f24 + f23, (r1, 0, float('inf'))))

    # print("f23",f23)
    # print("f24",f24)

    print("J", f25)

    return f25

def hin( fx1 ,fx2, z ):
    fx = fx1
    z=z


    # 拉普拉斯算符
    f1 = (1 / (r * r)) * diff((r * r * diff(fx, r)), r)

    f2 = (1 / (r * r * sin(θ))) * diff((sin(θ) * diff(fx, θ)), θ)

    f3 = (1 / (r * r * sin(θ) * sin(θ))) * diff(fx, Φ, Φ)

    f8 = fx2*(-1 / 2) * (f1 + f2 + f3)

    # print   (   f1 )
    # print   (   f2 )
    # print   (   f3 )

    #print    ( f8 )

    # 球坐标积分  动能
    f9 = (integrate((integrate(integrate(f8 * r * r * sin(θ), (r, 0, float('inf'))), (θ, 0, pi))), (Φ, 0, 2 * pi)))

    print(f9)

    f10 = fx2 * (-z / r) * fx
    # 势能
    #print(f10)

    f11 = (integrate((integrate(integrate(f10 * r * r * sin(θ), (r, 0, float('inf'))), (θ, 0, pi))), (Φ, 0, 2 * pi)))

    print(f11)
    print("H", f9 + f11)
    d=f9+f11
    str=f9,f11,d
    return str

z=2.0


f = open('d:/工业/f/naf3数据处理.csv','w',encoding='gbk')
csv_writer = csv.writer(f)


for i in range(1,200):
 a0=0.2+i*0.01

 fx1 = (z / a0) ** (1.5) * 2 * sympy.exp(-z * r / a0) * (4 * pi) ** (-0.5)

 fr1=(z/a0)**(1.5)*2*sympy.exp(-z*r1/a0  )*(4*pi)**(-0.5)
 fr2=(z/a0)**(1.5)*2*sympy.exp(-z*r2/a0  )*(4*pi)**(-0.5)

 d2=jin(fr1, fr2)
 d = hin(fx1, fx1, z)
 print(" i ", i ,"  ",a0,"  ",d ," ",d2)

 csv_writer.writerow([ a0 ,d ,d2])

# 5. 关闭文件
f.close()



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值