对神经网络分类行为的认识二则

这篇博客探讨了粒子自旋的固定性质,并将其类比于神经网络的两种状态。网络的二分类过程被比喻为测量自旋取向,而寻找分类不动点则涉及寻找在所有形态数轴上保持不变的点。文章指出,局部的分类不动点如同共同的感受晶体,如文字交流,是人们在建立基于共同理解的静态点。
摘要由CSDN通过智能技术生成

分类与自旋

“每一种粒子都具有一个固定的自旋值,永远不变,粒子从来不存在开始转得更快或更慢;以ћ作为度量单位,

宇宙中每个光子的自旋等于每个希格斯玻色子的自旋等于零;自旋是粒子的固有属性,不是那种随着粒子的演化而变化的量(除非它变换成另一种粒子)。

与常规的轨道角动量不同的是,自旋的最小单位是半个ћ而不是一个ћ。电子的自旋为1/2,上夸克的自旋也是1/2。

电子自旋是一个重要的相对论特性(与我们在日常生活中遇到的与旋转物体相关的自旋有着本质的区别)。”

(A,B)---m*n*k---(1,0)(0,1)

制作一个分类A和B的网络,这个网络有两部分组成,A和B两个训练集,m*n*k作为网络,而网络m*n*k有两个态(1,0)和(0,1)。

 这一过程运动部分是A和B,但A和B的运动结果是通过网络的两个态来表现的。也就是这个网络的两个态表达了两个对象的运动,我们对同一个对象的观察对应的是两个物体的运动。而显然在神经网络分类的行为中,我们不必知道A与B之间的距离,这就意味着网络m*n*k所体现的A和B之间的运动与A和B之间的距离无关,所以这种运动对网络m*n*k来说是超距的,是瞬时的。

 而对这个二分类网络,他只有两个态(1,0)和(0,1)。现在把这两个态理解为自旋的两个方向↑↓。所以综合,发生于A,B与网络m*n*k之间的一种瞬时相互作用最终决定了网络m*n*k的自旋取向。

所以所谓的分类过程就是测量网络自旋取向的过程,如果让A向(1,0)收敛,而让B向(0,1)收敛。然后用A判断网络的自旋取向,则自旋一定是↑是单向的。但如果训练过程是一个瞬时的运动就不能排除A向(0,1)收敛而B向(1,0)收敛的可能,因此判断在状态A时网络的自旋就同时有两种可能↑↓,他们发生的概率是一半对一半。

/***/

寻找形态数轴的不动点

(分类原点,分类对象)---m*n*k---(1,0)(0,1)

也就是寻找一个分类对象与任何分类原点分类,迭代次数都相同。这个分类对象在所有的形态数轴上的位置是一个定值。

在实数数轴上找到一个与1,3,5等距的点是不可能的,因为实数有明确的内在递进规律。在直线上没有到3个点距离都相同的点。

而形态数轴上的点是没有递进规律的,这就意味着这些形态点并不是在一条直线上。所以至少可以合理假设存在与远多于两个形态点等距的不动点。

假如真的有这样全面的分类不动点,就意味着无论什么时候,也无论在哪里看这个不动点,得到的感受总是相同的。这种感受将是无条件的,是时间对称,是恒不变的。  

这意味这将人的感受形态化,全面分类不动点对应的形态看起来像是一种感受晶体。不确定这种全面的分类不动点是否真的存在,但局部的分类不动点是广泛存在的,比如电影,音乐,人在看过以后会有某些共同的感受,如果把摞在一起的文字看作是一个形态整体,而我们的理解就是对这个形态整体的认识,所以文字本身不就是一种局部形态不动点吗?

我们把文字仅仅看作是形态,我们可以通过文字交流,显然是因为我们有共同的文字形态数轴。所以从这个角度人与人之间文字的交流不就是在建立基于共同的形态数轴构造局部不动点的过程吗?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值