荒野觅踪---寻找迭代次数

按照迭代次数和熵之间反比关系的假设

(A,B)---m*n*k---(1,0)(0,1)

可以合理的推测两个分类对象之间的熵取决于点的数值大小和分布,这次就从数值大小的角度验证迭代次数和熵之间的关系。

(0,3)---m*n*k---(1,0)(0,1)

用神经网络分类mnist的0和3,用间隔取点的办法把图片缩小为9*9,让0就是原始数据集的0。mnist 3随机的保留70%的点,并在归一化的操作中增加一个系数d。让d分别等于1,0.9,0.8,…,0.1.比如如果d=0.1就意味这3中的所有点的最大值就是0.1,相当于归0.1化。而0都按照正常的方式归一化。因此点的分布完全相同,而迭代次数的差异仅仅取决于数值大小。

考虑两个粒子n和m,n的运动范围是0-1,另一个粒子m运动范围是0-0.1,因为n粒子的运动区间包含了m粒子的运动区间,所以m粒子可能的状态数应该小于n粒子可能的运动状态数量。因此n粒子的熵应该大于m粒子的熵。因此系数d越大熵越大。

现在不管形态0和3到底是如何相互作用的,把0和3考虑成一个复合的整体,这个整体在点的位置关系没有变化的情况下,点的数值大小变了。系数d值对0和3的复合体的影响应该和对n和m的影响是一致的。

因此有理由假设随着系数d的减小0和3的复合体的熵减小,迭代次数增加。

让收敛误差为1e-4到1e-5,每个收敛误差统计199次,取平均值。得到表格

*d:1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

1.00E-04

2376.150754

2800.271357

2626.100503

3907.909548

3742

5205.105528

6087.638191

10873.94975

20774.23116

29083.03015

9.00E-05

2524.733668

2889.929648

2886.552764

4186.140704

3742

5209.59799

6454.221106

11297.8995

22375.69849

32312.17588

8.00E-05

2667.58794

2903.487437

2983.366834

4295.537688

3842.110553

5210

7736.271357

12169.38693

23928.75377

36107.54271

7.00E-05

2739.507538

2920.79397

3003.557789

4363.648241

4779.698492

5306.78392

8575.718593

14153.8593

24540.13065

41005.40201

6.00E-05

2953.798995

2961.738693

3026.753769

4597.005025

5197.949749

5557.688442

8658.653266

14807.96985

27646.0804

47307.65327

5.00E-05

3101.477387

2985.085427

3089.326633

4791.095477

5375.537688

5684.693467

8678

15468.83417

31340.38191

57505.47236

4.00E-05

3389.98995

3038.01005

3735.59799

4934.643216

5957.306533

7151.969849

8743.668342

16236.35176

34356.0402

69970.20603

3.00E-05

3531.025126

3569.427136

4368.201005

5044

6266

7600.562814

10017.12563

18448.62312

42366.81407

93417.52764

2.00E-05

3848.40201

4187.688442

4744

5140.020101

6266

9674.452261

12889.20603

23425.88945

52728.90452

134846.8593

1.00E-05

4212.81407

4744

5361.778894

5970

7748.281407

10620

14199.10553

27930.41206

74308.67337

234247.6332

 比如2739.507538,这个值表明在d=1,收敛误差为7e-5的情况下收敛199次的平均值为2739.507538. 选择收敛误差分别等于3e-5,2e-5,1e-5的几组画成图

可以看到随着d的减小迭代次数增加,所以这个实验现象和假设符合的很好。

这个实验验证了迭代次数和熵之间成反比的假设,也某种程度上表明了把完成收敛的0和3看成是一个复合体的可能,表明了对于两个二维形态的熵可以体现一种非递进的二维形态表象,同时也有一个一维的连续的线性递进表象。

或者点的位置关系决定了形态复合体的一种二维非递进表象,而数值的大小决定了形态复合体的一维连续表象。

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值