荒野觅踪---寻找迭代次数

按照迭代次数和熵之间反比关系的假设

(A,B)---m*n*k---(1,0)(0,1)

可以合理的推测两个分类对象之间的熵取决于点的数值大小和分布,这次就从数值大小的角度验证迭代次数和熵之间的关系。

(0,3)---m*n*k---(1,0)(0,1)

用神经网络分类mnist的0和3,用间隔取点的办法把图片缩小为9*9,让0就是原始数据集的0。mnist 3随机的保留70%的点,并在归一化的操作中增加一个系数d。让d分别等于1,0.9,0.8,…,0.1.比如如果d=0.1就意味这3中的所有点的最大值就是0.1,相当于归0.1化。而0都按照正常的方式归一化。因此点的分布完全相同,而迭代次数的差异仅仅取决于数值大小。

考虑两个粒子n和m,n的运动范围是0-1,另一个粒子m运动范围是0-0.1,因为n粒子的运动区间包含了m粒子的运动区间,所以m粒子可能的状态数应该小于n粒子可能的运动状态数量。因此n粒子的熵应该大于m粒子的熵。因此系数d越大熵越大。

现在不管形态0和3到底是如何相互作用的,把0和3考虑成一个复合的整体,这个整体在点的位置关系没有变化的情况下,点的数值大小变了。系数d值对0和3的复合体的影响应该和对n和m的影响是一致的。

因此有理由假设随着系数d的减小0和3的复合体的熵减小,迭代次数增加。

让收敛误差为1e-4到1e-5,每个收敛误差统计199次,取平均值。得到表格

*d:1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

1.00E-04

2376.150754

2800.271357

2626.100503

3907.909548

3742

5205.105528

6087.638191

10873.94975

20774.23116

29083.03015

9.00E-05

2524.733668

2889.929648

2886.552764

4186.140704

3742

5209.59799

6454.221106

11297.8995

22375.69849

32312.17588

8.00E-05

2667.58794

2903.487437

2983.366834

4295.537688

3842.110553

5210

7736.271357

12169.38693

23928.75377

36107.54271

7.00E-05

2739.507538

2920.79397

3003.557789

4363.648241

4779.698492

5306.78392

8575.718593

14153.8593

24540.13065

41005.40201

6.00E-05

2953.798995

2961.738693

3026.753769

4597.005025

5197.949749

5557.688442

8658.653266

14807.96985

27646.0804

47307.65327

5.00E-05

3101.477387

2985.085427

3089.326633

4791.095477

5375.537688

5684.693467

8678

15468.83417

31340.38191

57505.47236

4.00E-05

3389.98995

3038.01005

3735.59799

4934.643216

5957.306533

7151.969849

8743.668342

16236.35176

34356.0402

69970.20603

3.00E-05

3531.025126

3569.427136

4368.201005

5044

6266

7600.562814

10017.12563

18448.62312

42366.81407

93417.52764

2.00E-05

3848.40201

4187.688442

4744

5140.020101

6266

9674.452261

12889.20603

23425.88945

52728.90452

134846.8593

1.00E-05

4212.81407

4744

5361.778894

5970

7748.281407

10620

14199.10553

27930.41206

74308.67337

234247.6332

 比如2739.507538,这个值表明在d=1,收敛误差为7e-5的情况下收敛199次的平均值为2739.507538. 选择收敛误差分别等于3e-5,2e-5,1e-5的几组画成图

可以看到随着d的减小迭代次数增加,所以这个实验现象和假设符合的很好。

这个实验验证了迭代次数和熵之间成反比的假设,也某种程度上表明了把完成收敛的0和3看成是一个复合体的可能,表明了对于两个二维形态的熵可以体现一种非递进的二维形态表象,同时也有一个一维的连续的线性递进表象。

或者点的位置关系决定了形态复合体的一种二维非递进表象,而数值的大小决定了形态复合体的一维连续表象。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值