(A,B)---4*4*2---(1,0)(0,1)
用神经网络分类A和B,让A和B都是4*4的矩阵,其中A的所有格子中都是1,B中有1个0.每个训练集中都只有1张图片,每张图片不断重复实现网络收敛。在收敛误差δ一致的情况下 ,统计迭代次数平均值。得到表格
431 | 432 | 433 | 434 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 49664.99 | 49837.2 | 50115.58 | 49468.1 |
4.00E-04 | 61174.29 | 60516.34 | 60769.59 | 60547.6 |
3.00E-04 | 79569.04 | 78832.1 | 79287.35 | 80434.3 |
2.00E-04 | 116011.4 | 116304.9 | 115951.6 | 115654.2 |
1.00E-04 | 224611.3 | 223524.3 | 225130.4 | 225118.7 |
把这4条线画在一起
这4条线是高度重合的, 体现了对称关系。
(A,B)---4*4*2---(1,0)(0,1)
再做第二组,A是相同的,B中有两个0,统计了4种情况,得到的迭代次数如下
421 | 422 | 423 | 424 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 43419.55 | 43768.71 | 44255.1 | 44394.1 |
4.00E-04 | 53934.45 | 53668.25 | 54321.85 | 54310.12 |
3.00E-04 | 70134.04 | 70128.54 | 70742.93 | 71375.41 |
2.00E-04 | 103634.2 | 104216.6 | 103698.3 | 103876 |
1.00E-04 | 200992.7 | 201399.3 | 201920.7 | 201201.3 |
由于对称关系的存在,这4条线也是高度重合的
但是比较43的数据和42的数据会发现
43 | 1.00E-04 | 224611.3 | 223524.3 | 225130.4 | 225118.7 |
42 | 1.00E-04 | 200992.7 | 201399.3 | 201920.7 | 201201.3 |
43的数据大于42的数据,考虑迭代次数和熵成反比的假设,这表明42的熵大于43的熵
比如把参与分类的A和B中的数字看作是组成A和B的粒子,而分类的过程就是让A和B中的粒子互相交换位置,而所谓的熵就是粒子运动的距离。比如对于431,显然B中的3个粒子无需移动,因为A中的(1,0),(0,1),(1,1)3个位置本来就是同样的3个粒子。
而仅仅需要移动的就是A中的(0,0)粒子,而这个粒子的最短移动方法有同样概率的两种,分别是(0,0)→(1,0)和(0,0)→(0,1).每种移动的距离都是1,因此431对应的粒子移动距离就是1。
而对421,同样仅需移动就是A中(0,1)和(1,1),两个粒子。用同样的办法,这两个粒子成本最小的移动方法就是(0,1)→(0,0),和(1,1)→(1,0),每个移动的距离都是1,因此总距离是2,所以移动距离和421>431,所以431的迭代次数大于421.
用同样的办法做了第三组实验,B中只有1个1.让A与B分类
得到的迭代次数表格
411 | 412 | 413 | 414 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 41909.38 | 41784.2 | 42049.96 | 41667.75 |
4.00E-04 | 51967.94 | 52190.18 | 51324.76 | 51861.47 |
3.00E-04 | 67093.26 | 67083.14 | 67088.89 | 66872.62 |
2.00E-04 | 98633.1 | 98606.23 | 101325.4 | 99056.68 |
1.00E-04 | 192559.2 | 193504.3 | 194800.3 | 192974.1 |
同样这4条线是高度重合的
在收敛误差一致的情况下比较迭代次数
43 | 1.00E-04 | 224611.3 | 223524.3 | 225130.4 | 225118.7 |
42 | 1.00E-04 | 200992.7 | 201399.3 | 201920.7 | 201201.3 |
41 | 1.00E-04 | 192559.2 | 193504.3 | 194800.3 | 192974.1 |
显然41系列是最小的,41<42<43.
用同样的粒子相互移动的方法计算,A和B分类,只有A中的3个粒子需要向B中的唯一的一个粒子的位置移动,而移动的距离是1+1+1.414=3.414.而这个值大于42系列的2,大于41系列的1.因此41系列的熵最大。迭代次数最小。
因此总移动距离41>42>43,迭代次数41<42<43。