所谓分类到底是在干什么?

(A,B)---m*n*k---(1,0)(0,1)

移动距离和的假设

用神经网络分类A和B,把参与分类的A和B中的数字看作是组成A和B的粒子,设分类的过程就是让A和B中的粒子互相交换位置,寻找最短移动路径的过程。而熵H与最短移动距离和成正比,迭代次数n和熵H成反比。

对二值化图片移动规则汇总

每个粒子移动一次,位置重合不移动,0不动,单次移动距离恒为1.

这次继续验证这一假设

让A中有9个1,B中有8个1. 分类这两张图片,让这两张图片不断迭代直到收敛。在收敛误差一致的条件下,收敛199次,统计迭代次数平均值并比较。

得到迭代次数

981

983

987

989

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

34219.01

34600.46

34299.97

34162.28

4.00E-04

41899.68

41577.95

41779.19

41478.43

3.00E-04

53474.56

53931.35

54224.66

54175.03

2.00E-04

77797.83

77866.07

78635.94

77287.59

1.00E-04

148175

146977.9

147288.2

146783.9

4条线是重合的,符合981,983,987,989相对于A对称的事实。并且按照移位规则,这4种情况的移动距离和都是1.因为只有A中有一个粒子需要移动,移动的距离恒为1,与前述实验94系列的实验数据相比较

941

942

943

944

945

946

947

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

22959.57

22854.03

22941.76

22876.61

22979.1

23053.17

23076.96

4.00E-04

27774.2

28250.26

27933.11

27961.84

27778.93

28150.59

28129.2

3.00E-04

35993.35

36440.37

36647.11

36798.63

36995.76

36409.85

36526.92

2.00E-04

52950.71

53656.6

52985.71

53283.13

53381.54

53199.01

53232.16

1.00E-04

101146.2

102696.1

101808.5

101585.2

102078.7

102686.3

101771.2

因为94系列的移动距离为5,因此94系列的熵>91系列的这4种情况,因此94系列的迭代次数 <91系列的迭代次数。

再做第二组实验

同样A有9个1,B有8个1,得到迭代次数

981

983

987

989

982

984

986

988

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

34219.01

34600.46

34299.97

34162.28

34676.75

34212.45

34217.01

33959.48

4.00E-04

41899.68

41577.95

41779.19

41478.43

41780.76

42039.11

41703.63

41880.59

3.00E-04

53474.56

53931.35

54224.66

54175.03

53560.36

53304.33

54140.83

53930.89

2.00E-04

77797.83

77866.07

78635.94

77287.59

77295.69

77960.25

77721.77

77141.64

1.00E-04

148175

146977.9

147288.2

146783.9

147796.8

146967.2

148184.4

147621.7

这8条曲线都是重合的,982和981显然并不是对称的,因为981不论怎么操作也变不成982。 但这一现象很容易用移动距离和假设去解释,因为982也只有1个点需要移动,移动距离恒为1,因此982的总移动距离为1,和981相同,因此迭代次数曲线重合。

再做第三组实验

985显然又是一个新的位置,985旋转任意角度都可以返回自身,这与981和982都不同。那985的迭代次数是多少?

981

983

987

989

982

984

986

988

985

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

34219.01

34600.46

34299.97

34162.28

34676.75

34212.45

34217.01

33959.48

34082.06

4.00E-04

41899.68

41577.95

41779.19

41478.43

41780.76

42039.11

41703.63

41880.59

42305.63

3.00E-04

53474.56

53931.35

54224.66

54175.03

53560.36

53304.33

54140.83

53930.89

54009.94

2.00E-04

77797.83

77866.07

78635.94

77287.59

77295.69

77960.25

77721.77

77141.64

78422.43

1.00E-04

148175

146977.9

147288.2

146783.9

147796.8

146967.2

148184.4

147621.7

147644.9

实验数值是符合移动距离和假设的,因为985中总移动距离和也是1,因此和981,982系列的迭代次数曲线是重合的。

所以这些数据验证了一个假设,神经网络的分类行为可以理解为一种移位操作,在A和B两条纸带不同位置分布有点,神经网络的权重先让B上的点向A的位置移动,再让A上的点向B位置移动,而最短的移动距离和将决定最终的迭代次数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值