用神经网络验算1+1是否等于0+2

这篇博客探讨了神经网络用于二值化图片分类时,图片中不重合点的数量如何影响迭代次数。实验表明,不重合点的总数与迭代次数直接相关,且在移动距离和固定时,迭代次数保持一致。通过对比不同设置的实验数据,验证了这一假设,即在移动距离和相同时,迭代次数不受具体不重合点分布位置的影响。
摘要由CSDN通过智能技术生成

(A,B)---m*n*k---(1,0)(0,1)

移动距离和假设

用神经网络分类A和B,把参与分类的A和B中的数字看作是组成A和B的粒子,分类的过程就是让A和B中的粒子互相交换位置,寻找最短移动路径的过程。而熵H与最短移动距离和成正比,迭代次数n和熵H成反比。

对二值化图片移动规则汇总

每个粒子移动一次,位置重合不移动,0不动,单次移动距离恒为1.

按照移动距离和假设,二值化图片的迭代次数仅取决于两张图片不重合点的数量。在不重合点的数量一致的情况下,迭代次数相同。这次就验证是否1+1=0+2.

用神经网络分类A和B,让A和B中都只有8个1.让两张图片不断迭代直到收敛。每个收敛误差收敛199,次统计迭代次数平均值,并比较。

得到迭代次数

881

882

883

δ

迭代次数n

迭代次数n

迭代次数n

5.00E-04

27843.89

28047.93

28222.1

4.00E-04

34511.79

34296.85

34216.58

3.00E-04

44407.41

44363.34

44780.25

2.00E-04

64832.42

64699.59

64899.54

1.00E-04

122874.1

122843.6

123713.3

s

2

2

2

这三条曲线是重合的。因为他们的移动距离和都是2。如在881中,A的(0,0)点和B的(0,2)点位置不重合,因此不重合点的数量为1+1=2,单次移动距离恒为1.因此总的移动距离和为2.而882和883的总的移动距离和也都是2,因此他们的迭代次数曲线是重合的。

继续完成884-889的实验,得到的迭代次数

881

882

883

884

885

886

887

888

889

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

27843.89

28047.93

28222.1

27903.94

28240.39

28198.85

28065.27

28000.63

28176.94

4.00E-04

34511.79

34296.85

34216.58

34390.62

34195.14

34523.45

34198.6

34386.41

34347.47

3.00E-04

44407.41

44363.34

44780.25

44573.61

44417.75

44631.43

44357.2

44606.01

44942.25

2.00E-04

64832.42

64699.59

64899.54

64675.4

64971.76

64125.21

64203.32

64238.52

64867.23

1.00E-04

122874.1

122843.6

123713.3

123238.5

121054.4

123131.1

123981.3

122225.9

121845.1

s

2

2

2

2

2

2

2

2

2

经比较可确认884-889的迭代次数与881-883的迭代次数是重合的。这与假设一致。

相比较971,971的A中不重合点的数量是0,B中不重合点的数量是2个。因此对于971而言,不重合点的数量是0+2.

而881不重合点的数量是1+1.因此如果971和881的迭代次数重合就验证了前文的假设。

971的实验已经完成,对比二者的数据

971

881

δ

迭代次数n

迭代次数n

5.00E-04

28229.22

27843.89

4.00E-04

34548.15

34511.79

3.00E-04

44497.27

44407.41

2.00E-04

64693.36

64832.42

1.00E-04

123601.3

122874.1

s

2

2

两条曲线是重合的,因此对于二值化图片,如果不重合点的总数是一致的,他们的迭代次数就是一致的。

与前述实验数据对比

981

971

881

122

961

951

941

931

921

911

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

34219.01

28229.22

27843.89

25862.05

25523.99

23904.73

22959.57

22166.65

22094.36

23575.86

4.00E-04

41899.68

34548.15

34511.79

31524.1

30958.15

28978.03

27774.2

27290.48

27253.6

28991.81

3.00E-04

53474.56

44497.27

44407.41

41011.36

40262.78

38252.24

35993.35

35639.73

35340.25

37399.98

2.00E-04

77797.83

64693.36

64832.42

59270.11

59096.97

55426.48

52950.71

51890.25

52155.43

54335.16

1.00E-04

148175

123601.3

122874.1

112397.9

113446.1

106880.8

101146.2

100158

98502.28

102787.2

s

1

2

2

3

3

4

5

6

7

8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值