(A,B)---m*n*k---(1,0)(0,1)
移动距离和假设
用神经网络分类A和B,把参与分类的A和B中的数字看作是组成A和B的粒子,分类的过程就是让A和B中的粒子互相交换位置,寻找最短移动路径的过程。而熵H与最短移动距离和成正比,迭代次数n和熵H成反比。
对二值化图片移动规则汇总
每个粒子移动一次,位置重合不移动,0不动,单次移动距离恒为1.
按照移动距离和假设,神经网络相当于用一套权重实现了两条纸带的移位。并由于反向传导的机制使得神经网络有了一种自求解的功能。
如果将神经网络的输入理解为哈密顿量,把权重看作概率密度,则神经网络就是在解这个方程组。
所以如果那两条纸带换作是两条DAN链,这不就是双螺旋吗?
这次继续验证移动距离和假设
这次用的是87x系列图片,A有8个1,B有7个1,让A和B分类,并不断迭代直到收敛,对每个收敛误差收敛199次,统计迭代次数平均值,并比较。
871 | 872 | 873 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 34553.02 | 34107.7 | 34543.39 |
4.00E-04 | 41568.85 | 41769.7 | 41334.09 |
3.00E-04 | 54287.27 | 54356.59 | 54026.42 |
2.00E-04 | 78173.77 | 77792.13 | 77595.7 |
1.00E-04 | 146473.4 | 146522.8 | 147176.8 |
s | 1 | 1 | 1 |
比较871,872,873的迭代次数曲线,他们是重合的。因为他们的移动距离和都是1.比如871,在871A中只有(1,0)粒子位置不重合,871B中的所有粒子和A中的粒子位置都重合,因此总的需要移动的粒子只有1个。单次移动距离恒为1,因此总的移动距离和为1. 872,873的移动距离和都是1,因此他们的迭代次数曲线是重合的。
做第二组实验874-877.得到迭代次数曲线
871 | 872 | 873 | 874 | 875 | 876 | 877 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 34553.02 | 34107.7 | 34543.39 | 34581.67 | 25117.39 | 25356.29 | 25376.73 |
4.00E-04 | 41568.85 | 41769.7 | 41334.09 | 41605.47 | 31102.23 | 31180.94 | 30821.8 |
3.00E-04 | 54287.27 | 54356.59 | 54026.42 | 53895.11 | 40239.05 | 40003.56 | 40349.29 |
2.00E-04 | 78173.77 | 77792.13 | 77595.7 | 78269.89 | 58618.7 | 58036.02 | 58502.73 |
1.00E-04 | 146473.4 | 146522.8 | 147176.8 | 148338.9 | 111994.6 | 111340 | 111891.7 |
s | 1 | 1 | 1 | 1 | 3 | 3 | 3 |
可以很清楚的看到两条线,874是一条独立的线,而875-877是重合的。因为874的移动距离和为1,而875-877的移动距离和都是3.比如875A中(1,0),(2,1)两个粒子需要移动,而875B中(0,0)粒子需要移动,因此总的移动距离和为3.而876和877的移动距离和也都是3,因此迭代次数曲线分成两条。
并且875的迭代次数小于874,体现了迭代次数和移动距离和的反比关系。
与前述实验数据对比
981 | 871 | 971 | 881 | 122 | 961 | 875 | 951 | 941 | 931 | 921 | 911 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 34219.01 | 34553.02 | 28229.22 | 27843.89 | 25862.05 | 25523.99 | 25117.39 | 23904.73 | 22959.57 | 22166.65 | 22094.36 | 23575.86 |
4.00E-04 | 41899.68 | 41568.85 | 34548.15 | 34511.79 | 31524.1 | 30958.15 | 31102.23 | 28978.03 | 27774.2 | 27290.48 | 27253.6 | 28991.81 |
3.00E-04 | 53474.56 | 54287.27 | 44497.27 | 44407.41 | 41011.36 | 40262.78 | 40239.05 | 38252.24 | 35993.35 | 35639.73 | 35340.25 | 37399.98 |
2.00E-04 | 77797.83 | 78173.77 | 64693.36 | 64832.42 | 59270.11 | 59096.97 | 58618.7 | 55426.48 | 52950.71 | 51890.25 | 52155.43 | 54335.16 |
1.00E-04 | 148175 | 146473.4 | 123601.3 | 122874.1 | 112397.9 | 113446.1 | 111994.6 | 106880.8 | 101146.2 | 100158 | 98502.28 | 102787.2 |
s | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |