让两条纸带缠绕成螺旋

(A,B)---m*n*k---(1,0)(0,1)

移动距离和假设

用神经网络分类A和B,把参与分类的A和B中的数字看作是组成A和B的粒子,分类的过程就是让A和B中的粒子互相交换位置,寻找最短移动路径的过程。而熵H与最短移动距离和成正比,迭代次数n和熵H成反比。

对二值化图片移动规则汇总

每个粒子移动一次,位置重合不移动,0不动,单次移动距离恒为1.

按照移动距离和假设,神经网络相当于用一套权重实现了两条纸带的移位。并由于反向传导的机制使得神经网络有了一种自求解的功能。

如果将神经网络的输入理解为哈密顿量,把权重看作概率密度,则神经网络就是在解这个方程组。

所以如果那两条纸带换作是两条DAN链,这不就是双螺旋吗?

这次继续验证移动距离和假设

这次用的是87x系列图片,A有8个1,B有7个1,让A和B分类,并不断迭代直到收敛,对每个收敛误差收敛199次,统计迭代次数平均值,并比较。

871

872

873

δ

迭代次数n

迭代次数n

迭代次数n

5.00E-04

34553.02

34107.7

34543.39

4.00E-04

41568.85

41769.7

41334.09

3.00E-04

54287.27

54356.59

54026.42

2.00E-04

78173.77

77792.13

77595.7

1.00E-04

146473.4

146522.8

147176.8

s

1

1

1

比较871,872,873的迭代次数曲线,他们是重合的。因为他们的移动距离和都是1.比如871,在871A中只有(1,0)粒子位置不重合,871B中的所有粒子和A中的粒子位置都重合,因此总的需要移动的粒子只有1个。单次移动距离恒为1,因此总的移动距离和为1. 872,873的移动距离和都是1,因此他们的迭代次数曲线是重合的。

做第二组实验874-877.得到迭代次数曲线

871

872

873

874

875

876

877

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

34553.02

34107.7

34543.39

34581.67

25117.39

25356.29

25376.73

4.00E-04

41568.85

41769.7

41334.09

41605.47

31102.23

31180.94

30821.8

3.00E-04

54287.27

54356.59

54026.42

53895.11

40239.05

40003.56

40349.29

2.00E-04

78173.77

77792.13

77595.7

78269.89

58618.7

58036.02

58502.73

1.00E-04

146473.4

146522.8

147176.8

148338.9

111994.6

111340

111891.7

s

1

1

1

1

3

3

3

可以很清楚的看到两条线,874是一条独立的线,而875-877是重合的。因为874的移动距离和为1,而875-877的移动距离和都是3.比如875A中(1,0),(2,1)两个粒子需要移动,而875B中(0,0)粒子需要移动,因此总的移动距离和为3.而876和877的移动距离和也都是3,因此迭代次数曲线分成两条。

并且875的迭代次数小于874,体现了迭代次数和移动距离和的反比关系。

与前述实验数据对比

981

871

971

881

122

961

875

951

941

931

921

911

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

34219.01

34553.02

28229.22

27843.89

25862.05

25523.99

25117.39

23904.73

22959.57

22166.65

22094.36

23575.86

4.00E-04

41899.68

41568.85

34548.15

34511.79

31524.1

30958.15

31102.23

28978.03

27774.2

27290.48

27253.6

28991.81

3.00E-04

53474.56

54287.27

44497.27

44407.41

41011.36

40262.78

40239.05

38252.24

35993.35

35639.73

35340.25

37399.98

2.00E-04

77797.83

78173.77

64693.36

64832.42

59270.11

59096.97

58618.7

55426.48

52950.71

51890.25

52155.43

54335.16

1.00E-04

148175

146473.4

123601.3

122874.1

112397.9

113446.1

111994.6

106880.8

101146.2

100158

98502.28

102787.2

s

1

1

2

2

3

3

3

4

5

6

7

8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值