(A,B)---m*n*k---(1,0)(0,1)
移位距离和假设
用神经网络分类A和B,把参与分类的A和B中的数字看作是组成A和B的粒子,分类的过程就是让A和B中的粒子互相交换位置,寻找最短移位路径的过程。而熵H与最短移位距离和成正比,迭代次数n和熵H成反比。
对二值化图片移位规则汇总
每个粒子移位一次,位置重合不移位,0不动,单次移位距离恒为1.
移位距离和假设主要解决神经网络迭代次数大小问题,
如用神经网络分类771,772,777在收敛误差一致的情况下他们的迭代次数大小关系应该是什么样?按照假设在网络一致的情况下迭代次数仅反比于两张图片不重合的点的数量,因此迭代次数应该是771=772>777
实验验证
第一组771,772,773
771 | 772 | 773 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 28114.191 | 28085.261 | 28208.774 |
4.00E-04 | 34375.588 | 34151.658 | 33764.754 |
3.00E-04 | 44667.955 | 44513.844 | 44623.704 |
2.00E-04 | 64534.302 | 63656.965 | 64443.025 |
1.00E-04 | 123420.94 | 122732.07 | 123643.57 |
2 | 2 | 2 |
因为他们不重合点的数量是一致的,因此迭代次数曲线重合。
第二组
第二组
774 | 775 | 776 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 28152.51 | 28039.93 | 27918.92 |
4.00E-04 | 33850.41 | 34371.23 | 34387.13 |
3.00E-04 | 44378.52 | 44750 | 44313.8 |
2.00E-04 | 63973.07 | 63919.39 | 65251.34 |
1.00E-04 | 122810.6 | 121664.7 | 122617.9 |
2 | 2 | 2 |
因为774-776的不重合点的数量同样也是2个,因此他们的迭代次数和771-773是一致的。
做第三组
777 | 778 | 779 | 7710 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 23579.5 | 23683.91 | 23490.99 | 23602.23 |
4.00E-04 | 28965.92 | 28945.84 | 28952.08 | 28984.28 |
3.00E-04 | 37460.82 | 37765.26 | 37450.98 | 37485.38 |
2.00E-04 | 54804.67 | 55145.44 | 54937.85 | 54889.61 |
1.00E-04 | 106112.6 | 105932.8 | 106693.5 | 106267.3 |
4 | 4 | 4 | 4 |
这组不重合点的数量都是4个,因此他们的迭代次数一致,并且都小于771-776,体现了移位距离和与迭代次数的反比关系。
将本次数据与前述数据做比较
981 | 871 | 971 | 881 | 861 | 771 | 122 | 961 | 875 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 34219.01 | 34553.02 | 28229.22 | 27843.89 | 28270.21 | 28114.19 | 25862.05 | 25523.99 | 25117.39 |
4.00E-04 | 41899.68 | 41568.85 | 34548.15 | 34511.79 | 34803.25 | 34375.59 | 31524.1 | 30958.15 | 31102.23 |
3.00E-04 | 53474.56 | 54287.27 | 44497.27 | 44407.41 | 45065.05 | 44667.95 | 41011.36 | 40262.78 | 40239.05 |
2.00E-04 | 77797.83 | 78173.77 | 64693.36 | 64832.42 | 64707.93 | 64534.3 | 59270.11 | 59096.97 | 58618.7 |
1.00E-04 | 148175 | 146473.4 | 123601.3 | 122874.1 | 123288 | 123420.9 | 112397.9 | 113446.1 | 111994.6 |
s | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 |
851 | 951 | 866 | 777 | 941 | 854 | 931 | 921 | 911 | |
δ | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n |
5.00E-04 | 25288.76 | 23904.73 | 23868.01 | 23579.5 | 22959.57 | 22738.92 | 22166.65 | 22094.36 | 23575.86 |
4.00E-04 | 31347.55 | 28978.03 | 28820.87 | 28965.92 | 27774.2 | 27653.1 | 27290.48 | 27253.6 | 28991.81 |
3.00E-04 | 40549.93 | 38252.24 | 37659.14 | 37460.82 | 35993.35 | 36072.61 | 35639.73 | 35340.25 | 37399.98 |
2.00E-04 | 59255.58 | 55426.48 | 54661.18 | 54804.67 | 52950.71 | 53116.99 | 51890.25 | 52155.43 | 54335.16 |
1.00E-04 | 114094.8 | 106880.8 | 106599.8 | 106112.6 | 101146.2 | 100986.2 | 100158 | 98502.28 | 102787.2 |
s | 3 | 4 | 4 | 4 | 5 | 5 | 6 | 7 | 8 |