移位距离和假设的应用

本文探讨了如何利用神经网络通过粒子移位来分类二值图像,发现移位距离与迭代次数成反比,通过实例分析了771-7710间图片的迭代次数规律。实验结果显示,不重合点数量决定迭代次数,如771与772的迭代次数相同。
摘要由CSDN通过智能技术生成

(A,B)---m*n*k---(1,0)(0,1)

移位距离和假设

用神经网络分类A和B,把参与分类的A和B中的数字看作是组成A和B的粒子,分类的过程就是让A和B中的粒子互相交换位置,寻找最短移位路径的过程。而熵H与最短移位距离和成正比,迭代次数n和熵H成反比。

对二值化图片移位规则汇总

每个粒子移位一次,位置重合不移位,0不动,单次移位距离恒为1.

移位距离和假设主要解决神经网络迭代次数大小问题,

如用神经网络分类771,772,777在收敛误差一致的情况下他们的迭代次数大小关系应该是什么样?按照假设在网络一致的情况下迭代次数仅反比于两张图片不重合的点的数量,因此迭代次数应该是771=772>777

实验验证

第一组771,772,773

771

772

773

δ

迭代次数n

迭代次数n

迭代次数n

5.00E-04

28114.191

28085.261

28208.774

4.00E-04

34375.588

34151.658

33764.754

3.00E-04

44667.955

44513.844

44623.704

2.00E-04

64534.302

63656.965

64443.025

1.00E-04

123420.94

122732.07

123643.57

2

2

2

因为他们不重合点的数量是一致的,因此迭代次数曲线重合。

第二组

第二组

774

775

776

δ

迭代次数n

迭代次数n

迭代次数n

5.00E-04

28152.51

28039.93

27918.92

4.00E-04

33850.41

34371.23

34387.13

3.00E-04

44378.52

44750

44313.8

2.00E-04

63973.07

63919.39

65251.34

1.00E-04

122810.6

121664.7

122617.9

2

2

2

因为774-776的不重合点的数量同样也是2个,因此他们的迭代次数和771-773是一致的。

做第三组

777

778

779

7710

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

23579.5

23683.91

23490.99

23602.23

4.00E-04

28965.92

28945.84

28952.08

28984.28

3.00E-04

37460.82

37765.26

37450.98

37485.38

2.00E-04

54804.67

55145.44

54937.85

54889.61

1.00E-04

106112.6

105932.8

106693.5

106267.3

4

4

4

4

这组不重合点的数量都是4个,因此他们的迭代次数一致,并且都小于771-776,体现了移位距离和与迭代次数的反比关系。

将本次数据与前述数据做比较

981

871

971

881

861

771

122

961

875

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

34219.01

34553.02

28229.22

27843.89

28270.21

28114.19

25862.05

25523.99

25117.39

4.00E-04

41899.68

41568.85

34548.15

34511.79

34803.25

34375.59

31524.1

30958.15

31102.23

3.00E-04

53474.56

54287.27

44497.27

44407.41

45065.05

44667.95

41011.36

40262.78

40239.05

2.00E-04

77797.83

78173.77

64693.36

64832.42

64707.93

64534.3

59270.11

59096.97

58618.7

1.00E-04

148175

146473.4

123601.3

122874.1

123288

123420.9

112397.9

113446.1

111994.6

s

1

1

2

2

2

2

3

3

3

851

951

866

777

941

854

931

921

911

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

5.00E-04

25288.76

23904.73

23868.01

23579.5

22959.57

22738.92

22166.65

22094.36

23575.86

4.00E-04

31347.55

28978.03

28820.87

28965.92

27774.2

27653.1

27290.48

27253.6

28991.81

3.00E-04

40549.93

38252.24

37659.14

37460.82

35993.35

36072.61

35639.73

35340.25

37399.98

2.00E-04

59255.58

55426.48

54661.18

54804.67

52950.71

53116.99

51890.25

52155.43

54335.16

1.00E-04

114094.8

106880.8

106599.8

106112.6

101146.2

100986.2

100158

98502.28

102787.2

s

3

4

4

4

5

5

6

7

8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值