AcWing Round #15

A. 青蛙跳

题目链接


一个青蛙位于 x x x 轴的 0 0 0 点。

它将进行 k k k 次跳跃,其中:

1 , 3 , 5 … 1,3,5… 1,3,5 次(奇数次)跳跃,向右跳 a a a 单位长度,即从 x x x 跳到 x + a x+a x+a
2 , 4 , 6 … 2,4,6… 2,4,6 次(偶数次)跳跃,向左跳 b b b 单位长度,即从 x x x 跳到 x − b x−b xb
请问,最终它将跳到哪个位置?

输入格式

第一行包含整数 T T T,表示共有 T T T 组测试数据。

每组数据占一行,包含三个整数 a , b , k a,b,k a,b,k

输出格式

每组数据输出一行结果,一个整数表示青蛙最终所在的位置坐标。

数据范围

前三个数据满足 1 ≤ T ≤ 10 1\leq T\leq 10 1T10
所有数据满足 1 ≤ T ≤ 1000 , 1 ≤ a , b , k ≤ 1 0 9 1\leq T\leq 1000,1\leq a,b,k\leq 10^9 1T1000,1a,b,k109

输入样例:
6
5 2 3
100 1 4
1 10 5
1000000000 1 6
1 1 1000000000
1 1 999999999
输出样例:
2 1
3 4
3 2
1 2
3 7
题目分析:

不开long long见祖宗。

Code

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

int main()
{
    int T;
    cin >> T;
    while (T -- )
    {
        LL a, b, k;
        cin >> a >> b >> k;
        cout << (k + 1) / 2 * a - k / 2 * b << endl;
    }
    return 0;
}

B.最小正整数

题目链接


给定两个整数 n n n k k k

请你计算,末尾至少有连续 k k k 0 0 0,并且可以被 n n n 整除的最小正整数。

例如,当 n = 375 , k = 4 n=375,k=4 n=375,k=4 时,满足条件的最小正整数为 30000 30000 30000

输入格式

第一行包含整数 T T T,表示共有 T T T 组测试数据。

每组数据占一行,包含两个整数 n , k n,k n,k

输出格式

每组数据输出一行结果,表示满足条件的最小正整数。

数据范围

所有数据满足 1 ≤ T ≤ 10 1\leq T\leq 10 1T10 1 ≤ n ≤ 1 0 9 1\leq n\leq 10^9 1n109 0 ≤ k ≤ 8 0\leq k\leq 8 0k8

输入样例:
6
375 4
10000 1
38101 0
123456789 8
1 0
2 0
输出样例:
30000
10000
38101
12345678900000000
1
2

题目分析:

  1. 求一个数num,这个数一定是 n n n 的倍数: n u m = c ⋅ n num = c\cdot n num=cn

  2. 末尾有 k k k 0 0 0,表示num能被 1 0 k 10^k 10k 整除: 1 0 k   ∣   c ⋅ n 10^k\, |\, c\cdot n 10kcn

综上可得:

\begin{align}
c\cdot n &= 10^k\cdot t \\
&= 2^k\cdot 5^k\cdot t
\end{align}

TIPS: \text{TIPS:} TIPS: 10 10 10 一定要拆开,不能整体来算,因为 2 2 2 5 5 5 有可能分别来自于 c c c n n n,不能整体算。

n n n 分解成: n = 2 α ⋅ 2 β ⋅ r n = 2^{\alpha}\cdot 2^{\beta}\cdot r n=2α2βr c c c 分解成: 2 α ′ ⋅ 2 β ′ ⋅ r ′ 2^{\alpha'}\cdot 2^{\beta'}\cdot r' 2α2βr,因为要让 c ⋅ n c\cdot n cn 的值尽可能小,故 c c c 的系数 r ′ r' r 直接为 1 1 1

且有: α ′ = max ⁡ { k − α ,   0 } \alpha' = \max \lbrace k - \alpha,\ 0 \rbrace α=max{kα, 0} β ′ = max ⁡ { k − β ,   0 } \beta' = \max \lbrace k - \beta ,\ 0 \rbrace β=max{kβ, 0}

由于等式右边 2 k ⋅ 5 k ⋅ t 2^k\cdot 5^k\cdot t 2k5kt k k k 固定值,故最小的答案 c ⋅ n c\cdot n cn 就是 2 α ⋅ 2 β ⋅ r ⋅ 2 α ′ ⋅ 2 β ′ 2^{\alpha}\cdot 2^{\beta}\cdot r\cdot 2^{\alpha'}\cdot 2^{\beta'} 2α2βr2α2β

Code

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;
// 数 n 的 因数 p 的个数
int get_p(int n, int p)
{
    int res = 0;
    while (n % p == 0) res ++, n /= p;
    return res;
}
// a 的 b 次幂
int get_c(int a, int b)
{
    int res = 1;
    for (int i = 0; i < b; i ++ ) res *= a;
    return res;
}

int main()
{
    int T;
    cin >> T;
    while (T -- )
    {
        int n, k;
        cin >> n >> k;
        // 2的个数为a, 5的个数为b
        int a = get_p(n, 2), b = get_p(n, 5);
        
        // 需要补充2和5的个数
        cout << n * (LL)get_c(2, k - a) * get_c(5, k - b) << endl;
    }
    return 0;
}

C.行走路径

题目链接


给定一个 n × m n\times m n×m 的方格矩阵。

每个方格中都包含一个大写字母: Q , W , E , R Q,W,E,R Q,W,E,R 之一。

现在,小明要在方格矩阵中进行移动。

具体移动规则如下:

  1. 最初,小明应选择某个包含字母 Q Q Q 的方格作为起点。
  2. 小明每次移动可以沿上下左右四个方向,移动一格距离。当然不能出界。
  3. 小明在移动时,必须遵循:从包含字母 Q Q Q 的方格只能移动到包含字母 W W W 的方格,从包含字母 W W W 的方格只能移动到包含字母 E E E 的方格,从包含字母 E E E 的方格只能移动到包含字母 R R R 的方格,从包含字母 R R R 的方格只能移动到包含字母 Q Q Q 的方格。
  4. 小明每走过一个完整的 QWER,就称小明走过了一个轮次。小明需要走过尽可能多的轮次。即统计路径中完整的 QWER的个数,例如 WERQWERQ中仅有 1 1 1QWER

请问小明最多可以走过多少轮次?

输入格式

第一行包含两个整数 n , m n,m n,m

接下来 n n n 行,每行包含 m m m 个字符,每个字符为 Q , W , E , R Q,W,E,R Q,W,E,R 之一。

输出格式

如果小明无法成功走过任何轮次,则输出 none

如果小明可以成功走过无穷多轮次,则输出 infinity

如果小明可以成功走过有限多轮次,则输出他能走过的最多轮次。

数据范围

前六个测试点满足 1 ≤ n , m ≤ 5 1\leq n,m\leq 5 1n,m5
所有测试点满足 1 ≤ n , m ≤ 1000 1\leq n,m\leq 1000 1n,m1000

输入样例1:
1 2
QW
输出样例1:
none
输入样例2:
2 2
ER
WQ
输出样例2:
infinity
输入样例3:
5 5
QWERQ
QWERW
QWERE
QQERR
RREWQ
输出样例3:
4
题目分析:

本题十分类似:AcWing 901. 滑雪,但与滑雪有一点不同的是,本题的移动路径可能会存在环,而滑雪中,移动路径是一定按照高度严格递减的,如果没有环,本题可以直接套用滑雪的记忆化搜索方式解,首先枚举每一个起点,然后求从每一个起点出发,所能走的路径的最大值,然后由于路径中 Q W E R是连续的,故只要求得路径长度,就可以得到 Q W E R轮次个数。

但由于环的存在,我们首先需要判环。

一般来说,判环的方法有以下几种:

1、DFS
2、Topsort
3、强连通分量(Tarjan)

DFS 判环很容易,我们只需对所走过的路径中每一个点进行标记,一旦后续走到的路径中出现已经标记过的点,就证明存在环。

因此,我们可以采用记忆化搜索 + DFS 判环的方式求解。

Code

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;
char g[N][N];
bool st[N][N]; // 表示当前这个点有没有在递归路径中
int f[N][N];
bool is_inf; // 全局标记,是否存在环
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

int dp(int x, int y)
{
    if (is_inf) return -1;
    int &v = f[x][y];
    if (v != -1) return v; // 如果不等于-1,表示当前状态已经被计算过了,直接返回
    
    st[x][y] = true;// 标记当前点(x, y)已经走过
    
    v = 1; // 从当前点出发,路径长度为1
    for (int i = 0; i < 4; i ++ )
    {
        int a = x + dx[i], b = y + dy[i];
        // 若在边界内,且能够走到下一步
        if (a >= 0 && a < n && b >= 0 && b < m && g[a][b] == (g[x][y] + 1) % 4)
        {
            if (st[a][b])
            {
                // 如果说明已经标记的点重新出现在路径当中,说明存在环
                is_inf = true;
                return -1;
            }
            v = max(v, dp(a, b) + 1);
        }
    }
    st[x][y] = false;
    return v;
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; i ++ )
    {
        scanf("%s", g[i]);
        for (int j = 0; j < m; j ++ )
        {
        // 为了方便,将 Q W E R 转化为 0 1 2 3
            auto& c = g[i][j];
            if (c == 'Q') c = 0;
            else if (c == 'W') c = 1;
            else if (c == 'E') c = 2;
            else c = 3;
        }
    }
    
    memset(f, -1, sizeof f);
    int res = 0;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
        {
            int t = dp(i, j); // 从(i, j)这个点出发的最长路径
            // 如果起点从0开始,直接 t / 4 下取整就是整个轮次个数
            // 如果起点从1开始,那么 1 2 3需要掠过,就是减3
            // 从2开始,减2
            // 从3开始,减1
            if (g[i][j]) t -= 4 - g[i][j];
            res = max(res, t / 4);
        }
    
    if (is_inf) puts("infinity");    
    else if (!res) puts("none");
    else printf("%d\n", res);
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值