【完整版解决方案】sklearn加州房价数据集出错 housing = fetch_california_housing() HTTPError: HTTP Error 403: Forbidden

完整解决方案(一键复制)代码替换housing = fetch_california_housing()

翻了几条解决方案要么不全,要么收费,烦死个人下面给出完整解决方案!!!

1、下载数据集

原始数据集: cal_housing.tgz

在这里插入图片描述

2、放置数据集

查找 本地位置,执行代码后进入目标文件夹。

from sklearn import datasets
data_home = datasets.get_data_home()

在这里插入图片描述
放入下载好的数据压缩包,注意不需要解压缩!!
在这里插入图片描述

3、替换代码片段

calhous = fetch_california_housing()
data = calhous.data
target = calhous.target

替换为

from sklearn import datasets
import tarfile
data_home = datasets.get_data_home()
archive_path = os.path.join(data_home, 'cal_housing.tgz')
with tarfile.open(mode="r:gz", name=archive_path) as f:
     cal_housing = np.loadtxt(
         f.extractfile("CaliforniaHousing/cal_housing.data"), delimiter=","
     )
     # Columns are not in the same order compared to the previous
     # URL resource on lib.stat.cmu.edu
     columns_index = [8, 7, 2, 3, 4, 5, 6, 1, 0]
     cal_housing = cal_housing[:, columns_index]
       
feature_names = [
    "MedInc",
    "HouseAge",
    "AveRooms",
    "AveBedrms",
    "Population",
    "AveOccup",
    "Latitude",
    "Longitude",
]

target, data = cal_housing[:, 0], cal_housing[:, 1:]

# avg rooms = total rooms / households
data[:, 2] /= data[:, 5]

# avg bed rooms = total bed rooms / households
data[:, 3] /= data[:, 5]

# avg occupancy = population / households
data[:, 5] = data[:, 4] / data[:, 5]

# target in units of 100,000
target = target / 100000.0

解决!!!
因为粘贴代码时有缩进,手动删除时可能出现缩进不正确的问题,自行加减空格就行了。

当你尝试访问fetch_lfw_people数据集并遇到HTTP 403 Forbidden错误时,这通常意味着服务器禁止了你的请求。有几种可能的原因和解决办法: 1. **权限问题**:检查你的API密钥或认证信息是否有效,有些数据集服务需要特定的凭据才能访问。确保你在请求头中包含了正确的身份验证。 2. **速率限制**:某些数据源可能会对频繁访问设定速率限制。如果你短时间内多次请求,可能需要稍等一段时间再试,或者调整你的代码以减少并发请求。 3. **URL已更改**:如果数据集提供者更新了链接或URL结构,原始的地址可能不再可用。查看他们的文档或网站,获取最新的访问地址。 4. **网络问题**:确认你的网络连接正常,并排除其他可能阻止连接的因素。 5. **代理设置**:如果你在公司内部或其他网络环境下,可能需要设置代理服务器才能访问外部资源。确保代理配置正确。 6. **Python库版本**:有时候,旧版本的库可能无法处理新版本的服务返回的状态码。尝试升级到最新版本的urllib或requests库看看是否能解决问题。 为了解决这个问题,你可以按照以下步骤操作: - 检查官方文档或GitHub仓库提供的帮助信息。 - 确保你的代码示例如下: ```python import requests url = 'YOUR_DATASET_URL' headers = {'Authorization': 'your_api_key'} # 或者其他必要的认证信息 try: response = requests.get(url, headers=headers) response.raise_for_status() # 如果状态码不是200,会抛出异常 except requests.exceptions.HTTPError as errh: print ("HTTP Error:",errh) except requests.exceptions.ConnectionError as errc: print ("Error Connecting:",errc) except requests.exceptions.Timeout as errt: print ("Timeout Error:",errt) except requests.exceptions.RequestException as err: print ("Something went wrong",err) people_data = response.json() # 解析JSON响应 ``` 完成上述步骤后,如果问题仍未解决,提供具体的错误信息,以便进一步分析。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值