LeetCode 704. 二分查找
使用场景:
- 数组为有序数组
- 数组中无重复元素
注意点:
区分区间定义,一般为左闭右闭或左闭右开。
左闭右闭:
- while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
- if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
左闭右开:
- while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
- if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
LeetCode 27. 移除元素
使用场景:
- 不需要考虑数组中超出新长度后面的元素
- 不要使用额外的数组空间,原地修改数组
- 元素顺序可变
双指针法:
通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。
- 快指针:寻找新数组的元素 ,新数组就是不含有目标元素的数组
- 慢指针:指向更新 新数组下标的位置
// 时间复杂度:O(n)
// 空间复杂度:O(1)
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int slowIndex = 0;
for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
if (val != nums[fastIndex]) {
nums[slowIndex++] = nums[fastIndex];
}
}
return slowIndex;
}
};
相向指针法:
/**
* 相向双指针方法,基于元素顺序可以改变的题目描述改变了元素相对位置,确保了移动最少元素
* 时间复杂度:O(n)
* 空间复杂度:O(1)
*/
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int leftIndex = 0;
int rightIndex = nums.size() - 1;
while (leftIndex <= rightIndex) {
// 找左边等于val的元素
while (leftIndex <= rightIndex && nums[leftIndex] != val){
++leftIndex;
}
// 找右边不等于val的元素
while (leftIndex <= rightIndex && nums[rightIndex] == val) {
-- rightIndex;
}
// 将右边不等于val的元素覆盖左边等于val的元素
if (leftIndex < rightIndex) {
nums[leftIndex++] = nums[rightIndex--];
}
}
return leftIndex; // leftIndex一定指向了最终数组末尾的下一个元素
}
};