最(极)大似然估计

参数估计是统计推断的基本问题,最大似然估计法是用于参数估计的一种常用方法。

点估计

通俗的说就是用一个样本来估计总体的分布的参数
定义:设总体 X X X的分布函数 F ( x ; θ ) F(x;\theta) F(x;θ)形式已知, θ \theta θ是带估计参数。 X 1 , X 2 , X 3 , . . . X n X_1,X_2,X_3,...X_n X1,X2,X3,...Xn X X X的一个样本, x 1 , x 2 , x 3 , . . . x n x_1,x_2,x_3,...x_n x1,x2,x3,...xn是相应的一个样本值。点估计问题就是要构造一个适当的统计量 θ ^ ( X 1 , X 2 , X 3 , . . . X n ) \hat{\theta}(X_1,X_2,X_3,...X_n) θ^(X1,X2,X3,...Xn),用其观察值 θ ^ ( x 1 , x 2 , x 3 , . . . x n ) \hat{\theta}(x_1,x_2,x_3,...x_n) θ^(x1,x2,x3,...xn)作为参数 θ \theta θ的近似值。我们称 θ ^ ( X 1 , X 2 , X 3 , . . . X n ) \hat{\theta}(X_1,X_2,X_3,...X_n) θ^(X1,X2,X3,...Xn) t h e t a theta theta的估计量,称 θ ^ ( x 1 , x 2 , x 3 , . . . x n ) \hat{\theta}(x_1,x_2,x_3,...x_n) θ^(x1,x2,x3,...xn) θ \theta θ的估计值。

最大似然法

最大似然法是一种常用的构造估计量的方法
其主要思想是,对于一个随机变量,我们想要估计其统计分布的某个参数时,若已知了一组样本,那么我们就可以使用这组样本来估计这个参数。
若总体是离散变量,其分布律为 P ( X = x ) = p ( x ; θ ) P(X=x)=p(x;\theta) P(X=x)=p(x;θ),这里 θ \theta θ是待估计参数。 X 1 , X 2 , X 3 , . . . , X n X_1,X_2,X_3,...,X_n X1,X2,X3,...,Xn是来自总体X的样本。这里构造的估计量是这组样本的联合概率分布(这里还是使用上面的符号):
L ( θ ) = L ( X 1 , X 2 , X 3 . . . , X n ; θ ) = ∏ i = 1 n p ( X i ; θ ) L(\theta)=L(X_1,X_2,X_3...,X_n;\theta)=\prod_{i=1}^{n}p(X_i;\theta) L(θ)=L(X1,X2,X3...,Xn;θ)=i=1np(Xi;θ)
若已知这组样本的一个样本值是 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn,则上面的联合概率分布的估计值是:
L ( θ ) = L ( x 1 , x 2 , x 3 . . . , x n ; θ ) = ∏ i = 1 n p ( x i ; θ ) L(\theta)=L(x_1,x_2,x_3...,x_n;\theta)=\prod_{i=1}^{n}p(x_i;\theta) L(θ)=L(x1,x2,x3...,xn;θ)=i=1np(xi;θ)
又称为似然函数
若使用连续性随机变量其联合概率分布是:
∏ i = 1 n f ( x i ; θ ) d x i \prod_{i=1}^{n}f(x_i;\theta)dx_i i=1nf(xi;θ)dxi
其中 f ( x i ; θ ) f(x_i;\theta) f(xi;θ)为概率密度函数, d x i dx_i dxi为领域长度。由于 d x i dx_i dxi θ \theta θ无关,所以只需考虑概率密度函数。所以似然函数为:
L ( θ ) = L ( x 1 , x 2 , x 3 . . . , x n ; θ ) = ∏ i = 1 n f ( x i ; θ ) L(\theta)=L(x_1,x_2,x_3...,x_n;\theta)=\prod_{i=1}^{n}f(x_i;\theta) L(θ)=L(x1,x2,x3...,xn;θ)=i=1nf(xi;θ)
又于先入为主观念,最大似然法认为当前已知的样本,具有最大的概率发生。反过来说也就是,最大似然法认为, θ \theta θ的估计值是使得当前已知样本具有最大概率发生(即 X 1 = x 1 , X 2 = x 2 , X 3 = x 3 . . . , X n = x n X_1=x_1,X_2=x_2,X_3=x_3...,X_n=x_n X1=x1,X2=x2,X3=x3...,Xn=xn)的那个 θ \theta θ值,记作 θ ^ \hat{\theta} θ^:
L ( x 1 , x 2 , x 3 . . . , x n ; θ ^ ) = m a x θ L ( x 1 , x 2 , x 3 . . . , x n ; θ ) L(x_1,x_2,x_3...,x_n;\hat{\theta})=\begin{matrix} &max\\ &\theta \end{matrix} L(x_1,x_2,x_3...,x_n;\theta) L(x1,x2,x3...,xn;θ^)=maxθL(x1,x2,x3...,xn;θ)
这样得到的 θ ^ \hat\theta θ^称为 θ \theta θ最大似然估计值
这样最大似然估计值的求解就变为了一个求极值的过程。即从:
d d θ L ( θ ) = 0 \frac{d}{d\theta}L(\theta)=0 dθdL(θ)=0或者
d d θ l n L ( θ ) = 0 \frac{d}{d\theta}lnL(\theta)=0 dθdlnL(θ)=0求得
通常后者比前者更容易求解,称为对数似然方程, l n ( L ( θ ) ) ln(L(\theta)) ln(L(θ))称为对数似然函数。似然函数和对数似然函数可以乘上常数,任然是似然函数。

参考书1:概率论与数理统计 浙江大学 第四版
参考书2:统计学习方法 李航

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值