最大似然估计(MLE)

本文介绍了极大似然估计(MLE)的概念,并通过贝叶斯分类决策理论进行阐述。MLE是一种参数估计方法,用于估计概率密度函数的参数值。在语音识别等场景中,MLE有助于根据有限样本估计后验概率。文中详细讲解了如何求解最大似然估计量,包括单参数和多参数的情况,并给出了正态分布和均匀分布的示例。最后,总结了MLE的特点,强调了其在假设模型正确时的有效性。
摘要由CSDN通过智能技术生成

在研究语音识别中的算法之前,需要做一些基础理论的介绍,以便更好地进行后面的算法学习!~~~本文主要研究极大似然估计的理论。

下面由经典的贝叶斯分类决策来引入极大似然估计:

贝叶斯公式:

                                            

其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生了,并且它属于某一类别的概率,通过后验概率,我们就可以对样本进行分类。后验概率越大,说明某X属于这个类别W的可能性越大,我们越有理由把它归到这个类别W下,贝叶斯分类决策很普遍也很容易理解。实例说明如下:

已知,狗蛋儿在下雨天去幼儿园的概率是1/2,在晴天去幼儿园的概率是2/3,下雨天与晴天的比例是2:1,那么问题来了,狗蛋儿今天去幼儿园了,问今天是下雨还是晴天?

从问题可以看出, 事件发生了,我们要求出后验概率,根据贝叶斯公式求解步骤如下:

设:                                    W1:下雨;W2 :晴天; X:去幼儿园;

由已知条件可知:

                                

狗蛋下雨天或者晴天去幼儿园是相互独立的,由此可以算出

                          

继而由贝叶斯公式可以求得后验概率,也就是狗蛋去去幼儿园的条件下,当天天气是下雨天和晴天的概率:

                          

那么问题又来了:如果我们不知道先验概率和类条件概率,我们只有狗蛋儿以前去幼儿园的一些样本,如何根据仅有的样本来识别以后狗蛋去幼儿园的天气情况(后验概率)呢,最直接的方法就是找到(估计),根据估计值,再套用贝叶斯公式进行计算。


先验概率的估计比较容易:1,根据已知知识和经验;2,根据样本进行统计(样本要足够的全)

类条件概率就比较难了:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。当然了,概率密度函数的选取很重要,模型正确,在样本区域无穷时,我们会得到较准确的估计值,如果模型都错了,本来是高斯模型的概率密度函数,我们以为是均匀分布模型,那估计半天的参数,肯定也没啥意义了。

最终,最大似然估计的目的就是根据样本,来估计出概率密度函数的参数值。


Maximum Likehood Estimation

原理:最大似然估计是建立在最大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“ 模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为最大似然估计。


在估计开始前时,我们对样本有一个重要的要求:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 (iid条件),且有充分的训练样本


由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为࿱

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器灵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值