# 二次型，正定二次型

23 篇文章 4 订阅
21 篇文章 3 订阅

f ( x 1 , x 2 , . . . x n ) = a 11 x 1 2 + a 12 x 1 x 2 + a 13 x 1 x 3 + a 14 x 1 x 4 . . . + a 1 n x 1 x n f(x_1,x_2,...x_n)=a_{11}x_1^2+a_{12}x_1x_2+a_{13}x_1x_3+a_{14}x_1x_4...+a_{1n}x_1x_n
＋ a 21 x 2 x 1 + a 22 x 2 2 + a 23 x 1 x 3 + a 24 x 2 x 4 . . . + a 2 n x 2 x n ＋a_{21}x_2x_1+a_{22}x_2^2+a_{23}x_1x_3+a_{24}x_2x_4...+a_{2n}x_2x_n

+ a n 1 x n x 1 + a n 2 x n x 2 + a n 3 x n x 3 + a n 4 x n x 4 . . . + a n n x n 2 +a_{n1}x_nx_1+a_{n2}x_nx_2+a_{n3}x_nx_3+a_{n4}x_nx_4...+a_{nn}x_n^2

f = X T A X f=X^TAX

A X = [ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n a 21 x 1 + a 22 x 2 + . . . + a 2 n x n . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n ] AX=\begin{bmatrix} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\\ ...\\a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n \end{bmatrix} 在左乘 X T X^T 得到原式：
[ x 1 x 2 . . . x n ] [ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n a 21 x 1 + a 22 x 2 + . . . + a 2 n x n . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n ] \begin{bmatrix} x_1\\ x_2\\ ...\\x_n \end{bmatrix}\begin{bmatrix} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\\ ...\\a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n \end{bmatrix}

d f ( x 1 , x 2 , . . . x n ) d x 1 = 2 a 11 x 1 + a 12 x 2 + a 13 x 3 + a 14 x 4 . . . + a 1 n x n \frac{df(x_1,x_2,...x_n)}{dx_1}=2a_{11}x_1+a_{12}x_2+a_{13}x_3+a_{14}x_4...+a_{1n}x_n
＋ a 21 x 2 + 0 + 0 + 0... + 0 ＋a_{21}x_2+0+0+0...+0

+ a n 1 x n + 0 + 0 + 0... + 0 +a_{n1}x_n+0+0+0...+0
= 2 a 11 x 1 + ( a 12 + a 21 ) x 2 + ( a 13 + a 31 ) x 3 + ( a 14 + a 41 ) x 4 . . . + ( a 1 n + a n 1 ) x n =2a_{11}x_1+(a_{12}+a_{21})x_2+(a_{13}+a_{31})x_3+(a_{14}+a_{41})x_4...+(a_{1n}+a_{n1})x_n ，其余的还有对 x 1 , x 2 . . . x n x_1,x_2...x_n 的求导。

d f ( x 1 , x 2 , . . . x n ) d x 1 = 2 a 11 x 1 + 2 a 12 x 2 + 2 a 13 x 3 + 2 a 14 x 4 . . . + 2 a 1 n x n \frac{df(x_1,x_2,...x_n)}{dx_1}=2a_{11}x_1+2a_{12}x_2+2a_{13}x_3+2a_{14}x_4...+2a_{1n}x_n
d f ( x 1 , x 2 , . . . x n ) d x 2 = 2 a 21 x 1 + 2 a 22 x 2 + 2 a 23 x 3 + 2 a 24 x 4 . . . + 2 a 2 n x n \frac{df(x_1,x_2,...x_n)}{dx_2}=2a_{21}x_1+2a_{22}x_2+2a_{23}x_3+2a_{24}x_4...+2a_{2n}x_n
. . . . ....

▽ f ( X ) = [ 2 x − 4 y − 4 x + z . . . − 6 z + y ] \bigtriangledown f(X)=\begin{bmatrix} 2x-4y\\ -4x+z\\ ...\\-6z+y \end{bmatrix}



• 3
点赞
• 7
收藏
觉得还不错? 一键收藏
• 0
评论
08-16 1821
03-29 5273
07-23 392
04-09 991
12-04 5万+
09-15 4779
11-19 1万+
08-31 9251
03-04 3002
05-14 2977
09-12 2481
06-14 622

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。