二次型:含有n个变量
x
1
,
x
2
,
.
.
.
x
n
x_1,x_2,...x_n
x1,x2,...xn的二次齐次函数:
f
(
x
1
,
x
2
,
.
.
.
x
n
)
=
a
11
x
1
2
+
a
12
x
1
x
2
+
a
13
x
1
x
3
+
a
14
x
1
x
4
.
.
.
+
a
1
n
x
1
x
n
f(x_1,x_2,...x_n)=a_{11}x_1^2+a_{12}x_1x_2+a_{13}x_1x_3+a_{14}x_1x_4...+a_{1n}x_1x_n
f(x1,x2,...xn)=a11x12+a12x1x2+a13x1x3+a14x1x4...+a1nx1xn
+
a
21
x
2
x
1
+
a
22
x
2
2
+
a
23
x
1
x
3
+
a
24
x
2
x
4
.
.
.
+
a
2
n
x
2
x
n
+a_{21}x_2x_1+a_{22}x_2^2+a_{23}x_1x_3+a_{24}x_2x_4...+a_{2n}x_2x_n
+a21x2x1+a22x22+a23x1x3+a24x2x4...+a2nx2xn
…
+
a
n
1
x
n
x
1
+
a
n
2
x
n
x
2
+
a
n
3
x
n
x
3
+
a
n
4
x
n
x
4
.
.
.
+
a
n
n
x
n
2
+a_{n1}x_nx_1+a_{n2}x_nx_2+a_{n3}x_nx_3+a_{n4}x_nx_4...+a_{nn}x_n^2
+an1xnx1+an2xnx2+an3xnx3+an4xnx4...+annxn2
称为二次型。 二次型可以用矩阵表示记作:
f
=
X
T
A
X
f=X^TAX
f=XTAX
其中
X
=
[
x
1
x
2
.
.
.
x
n
]
X=\begin{bmatrix} x_1\\ x_2\\ ...\\x_n \end{bmatrix}
X=⎣⎢⎢⎡x1x2...xn⎦⎥⎥⎤,
A
=
[
a
11
a
12
.
.
.
a
1
n
a
21
a
22
.
.
.
a
2
n
.
.
.
a
n
1
a
n
2
.
.
.
a
n
n
]
A=\begin{bmatrix} a_{11}&a_{12}&...&a_{1n}\\ a_{21}&a_{22}&...&a_{2n}\\ ...\\a_{n1}&a_{n2}&...&a_{nn} \end{bmatrix}
A=⎣⎢⎢⎡a11a21...an1a12a22an2.........a1na2nann⎦⎥⎥⎤,可以通过先计算
A
X
AX
AX,再计算
X
T
A
X
X^TAX
XTAX来证明:
A
X
=
[
a
11
x
1
+
a
12
x
2
+
.
.
.
+
a
1
n
x
n
a
21
x
1
+
a
22
x
2
+
.
.
.
+
a
2
n
x
n
.
.
.
a
n
1
x
1
+
a
n
2
x
2
+
.
.
.
+
a
n
n
x
n
]
AX=\begin{bmatrix} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\\ ...\\a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n \end{bmatrix}
AX=⎣⎢⎢⎡a11x1+a12x2+...+a1nxna21x1+a22x2+...+a2nxn...an1x1+an2x2+...+annxn⎦⎥⎥⎤在左乘
X
T
X^T
XT得到原式:
[
x
1
x
2
.
.
.
x
n
]
[
a
11
x
1
+
a
12
x
2
+
.
.
.
+
a
1
n
x
n
a
21
x
1
+
a
22
x
2
+
.
.
.
+
a
2
n
x
n
.
.
.
a
n
1
x
1
+
a
n
2
x
2
+
.
.
.
+
a
n
n
x
n
]
\begin{bmatrix} x_1\\ x_2\\ ...\\x_n \end{bmatrix}\begin{bmatrix} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\\ ...\\a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n \end{bmatrix}
⎣⎢⎢⎡x1x2...xn⎦⎥⎥⎤⎣⎢⎢⎡a11x1+a12x2+...+a1nxna21x1+a22x2+...+a2nxn...an1x1+an2x2+...+annxn⎦⎥⎥⎤
我们来求一下二次型的导数:
d
f
(
x
1
,
x
2
,
.
.
.
x
n
)
d
x
1
=
2
a
11
x
1
+
a
12
x
2
+
a
13
x
3
+
a
14
x
4
.
.
.
+
a
1
n
x
n
\frac{df(x_1,x_2,...x_n)}{dx_1}=2a_{11}x_1+a_{12}x_2+a_{13}x_3+a_{14}x_4...+a_{1n}x_n
dx1df(x1,x2,...xn)=2a11x1+a12x2+a13x3+a14x4...+a1nxn
+
a
21
x
2
+
0
+
0
+
0...
+
0
+a_{21}x_2+0+0+0...+0
+a21x2+0+0+0...+0
…
+
a
n
1
x
n
+
0
+
0
+
0...
+
0
+a_{n1}x_n+0+0+0...+0
+an1xn+0+0+0...+0
=
2
a
11
x
1
+
(
a
12
+
a
21
)
x
2
+
(
a
13
+
a
31
)
x
3
+
(
a
14
+
a
41
)
x
4
.
.
.
+
(
a
1
n
+
a
n
1
)
x
n
=2a_{11}x_1+(a_{12}+a_{21})x_2+(a_{13}+a_{31})x_3+(a_{14}+a_{41})x_4...+(a_{1n}+a_{n1})x_n
=2a11x1+(a12+a21)x2+(a13+a31)x3+(a14+a41)x4...+(a1n+an1)xn,其余的还有对
x
1
,
x
2
.
.
.
x
n
x_1,x_2...x_n
x1,x2...xn的求导。
正定二次型:设二次型
f
=
X
T
A
X
f=X^TAX
f=XTAX,如果对任何
X
≠
0
X\neq0
X̸=0,都有
f
(
X
)
>
0
f(X)>0
f(X)>0,则称
f
f
f为正定二次型,并称对称矩阵
A
A
A是正定的。
由于
A
A
A是对称矩阵,所以其导数为:
d
f
(
x
1
,
x
2
,
.
.
.
x
n
)
d
x
1
=
2
a
11
x
1
+
2
a
12
x
2
+
2
a
13
x
3
+
2
a
14
x
4
.
.
.
+
2
a
1
n
x
n
\frac{df(x_1,x_2,...x_n)}{dx_1}=2a_{11}x_1+2a_{12}x_2+2a_{13}x_3+2a_{14}x_4...+2a_{1n}x_n
dx1df(x1,x2,...xn)=2a11x1+2a12x2+2a13x3+2a14x4...+2a1nxn
d
f
(
x
1
,
x
2
,
.
.
.
x
n
)
d
x
2
=
2
a
21
x
1
+
2
a
22
x
2
+
2
a
23
x
3
+
2
a
24
x
4
.
.
.
+
2
a
2
n
x
n
\frac{df(x_1,x_2,...x_n)}{dx_2}=2a_{21}x_1+2a_{22}x_2+2a_{23}x_3+2a_{24}x_4...+2a_{2n}x_n
dx2df(x1,x2,...xn)=2a21x1+2a22x2+2a23x3+2a24x4...+2a2nxn
.
.
.
.
....
....
所以
▽
f
(
X
)
=
2
A
X
\bigtriangledown f(X)=2AX
▽f(X)=2AX
举个例子:
其对其求导可得矩阵:
▽
f
(
X
)
=
[
2
x
−
4
y
−
4
x
+
z
.
.
.
−
6
z
+
y
]
\bigtriangledown f(X)=\begin{bmatrix} 2x-4y\\ -4x+z\\ ...\\-6z+y \end{bmatrix}
▽f(X)=⎣⎢⎢⎡2x−4y−4x+z...−6z+y⎦⎥⎥⎤