1 定义
- n n n 元二次型 f ( x 1 , x 2 , ⋯ , x n ) = x T A x f(x_1,x_2,\cdots,x_n)=\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x} f(x1,x2,⋯,xn)=xTAx。若对于任意的 x = [ x 1 , x 2 , ⋯ , x n ] T ≠ 0 \boldsymbol{x}=\begin{bmatrix} x_1,x_2,\cdots,x_n \end{bmatrix}^T \ne 0 x=[x1,x2,⋯,xn]T=0,均有 x T A x > 0 \boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}>0 xTAx>0,则称 f f f 为正定二次型,称二次型对应的矩阵 A A A 为正定矩阵。
- n n n 阶矩阵 A \boldsymbol{A} A 正定时,与 A \boldsymbol{A} A 有关的矩阵 k A ( k >