2.7.1 正定二次型

本文介绍了正定二次型的概念,定义为对于任意非零向量x,二次型f(x) = x^TAx总大于0。正定二次型的矩阵A具有正定性质,其充要条件包括正惯性指数等于n、与A相关的矩阵正定、可逆矩阵D存在使得A=DTD、A相似于单位矩阵、所有特征值大于0及所有顺序主子式大于0。此外,正定二次型的必要条件包括对角线元素大于0且行列式大于0。
摘要由CSDN通过智能技术生成

1 定义

  • n n n 元二次型 f ( x 1 , x 2 , ⋯   , x n ) = x T A x f(x_1,x_2,\cdots,x_n)=\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x} f(x1,x2,,xn)=xTAx。若对于任意的 x = [ x 1 , x 2 , ⋯   , x n ] T ≠ 0 \boldsymbol{x}=\begin{bmatrix} x_1,x_2,\cdots,x_n \end{bmatrix}^T \ne 0 x=[x1,x2,,xn]T=0,均有 x T A x > 0 \boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}>0 xTAx>0,则称 f f f 为正定二次型,称二次型对应的矩阵 A A A 为正定矩阵。
  • n n n 阶矩阵 A \boldsymbol{A} A 正定时,与 A \boldsymbol{A} A 有关的矩阵 k A ( k >
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值