UVA 1062 Lattice Animals

P3870网格动物

时间限制 : - MS   空间限制 : 165536 KB
评测说明 : 3s
问题描述

网格动物是一种在网格中的联通块,由n个方块构成的联通块称为n连块。平移、旋转、翻转之后相同的算作同一种。例如,2*4里面的5连块有5种(第一行),3*3里的8连块有3种(第二行)。

输入n,w,h,请问w*h的网格里有多少种n连块?

输入格式

输入包含多组数据,每组数据仅一行,三个整数n,w,h。

输出格式

每行输出一个整数,表示N连块的个数

样例输入

5 1 4
5 2 4
5 3 4
5 5 5
8 3 3

样例输出

0
5
11
12
3

提示

1<=n<=10
1<=w,h<=n

数据组数<=300


看数据范围就知道是搜索题了……,虽然组数比较多我们可以先算出数组ans[n][w][h]然后直接输出就完了

我们就从(0,0)号点开始往上下左右四个方向搜索,如果对于一个搜到的连通块,在此之前已经搜到了一个连通块可以通过翻转,旋转,翻转后旋转等等操作得到这个连通块,就说明这个连通块已经出现过了,不计入答案

那么我们判断一个连通块是否出现过呢?我们可以使用如下方法:
定义一个结构体Single,表示每一个单位格子的位置坐标

再定义一个集合set<Single>,即为一个连通块所选的格子集合

再定义一个集合set<set<Single> >G[i] 即为大小为i的连通块的集合

所以判断一个连通块s是否已经出现过,只需要判断G[s.size()].count(s)即可

在搜完之后要进行一个标准化操作,即算出一个连通块集合的最小格子的坐标,然后所有其他格子的坐标都减去这个坐标,易于判断和查找

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<set>
using namespace std;
const int maxn=15,inf=0x3f3f3f3f;
inline void _read(int &x){
    char t=getchar();bool sign=true;
    while(t<'0'||t>'9')
    {if(t=='-')sign=false;t=getchar();}
    for(x=0;t>='0'&&t<='9';t=getchar())x=x*10+t-'0';
    if(!sign)x=-x;
}
struct Single{
	int x,y;
	Single(int x,int y):x(x),y(y){}
	bool operator<(const Single& h)const{
		return  x==h.x?y<h.y:x<h.x;
	} 
};
typedef set<Single> Block;
set<Block> G[maxn];
int ans[15][15][15],n,w,h,t;
int dx[4]={0,0,-1,1};
int dy[4]={-1,1,0,0};
inline Block Standarize(Block p){//标准化操作
	int minx=inf,miny=inf;
	Block temp;
	set<Single> :: iterator it;
	for(it=p.begin();it!=p.end();it++)
		minx=min(minx,it->x),miny=min(miny,it->y);
	for(it=p.begin();it!=p.end();it++)
		temp.insert(Single(it->x-minx,it->y-miny)); 
	return  temp;
}
inline Block Spin(Block p){//旋转操作
	Block temp;
	set<Single>::iterator it;
	for(it=p.begin();it!=p.end();it++)
		temp.insert(Single(it->y,-(it->x)));
	return  Standarize(temp);
}
inline Block Reverse(Block p){//翻转操作
	Block temp;
	set<Single>::iterator it;
	for(it=p.begin();it!=p.end();it++)
		temp.insert(Single(it->x,-(it->y)));
	return  Standarize(temp);
}
bool check(Block p){//判断p连通块是否已经出现过
	int i,B=p.size();
	if(G[B].count(p))return  0;
	for(i=0;i<4;i++){
		p=Spin(p);
		if(G[B].count(p))return  0;
	}
	p=Reverse(p);
	if(G[B].count(p))return  0;
	for(i=0;i<4;i++){
		p=Spin(p);
		if(G[B].count(p))return  0;
	}
	G[B].insert(p);
	return  1;
}
void dfs(Block p){
	if(p.size()==n){
		check(p);
		return  ;
	}
	set<Single> :: iterator it;
	for(it=p.begin();it!=p.end();it++){
		for(int i=0;i<4;i++){
			Single cur=Single(dx[i]+it->x,dy[i]+it->y);
			if(!p.count(cur)){
				Block temp=p;
				temp.insert(cur);
				dfs(temp);
			}
		}
	}
}
void Get_table(){
	Block s;
	s.insert(Single(0,0));
	G[1].insert(s);
	for(n=2;n<=10;n++){
		set<Block> :: iterator it;
		for(it=G[n-1].begin();it!=G[n-1].end();it++)dfs(*it);
	}
	for(n=1;n<=10;n++){
		set<Block>::iterator it;
		set<Single>::iterator i;
		for(it=G[n].begin();it!=G[n].end();it++){
			int maxx=0,maxy=0;
			for(i=it->begin();i!=it->end();i++){
				maxx=max(maxx,i->x);
				maxy=max(maxy,i->y);
			}
			if(maxx<maxy)swap(maxx,maxy);
			for(w=1;w<=10;w++)
				for(h=1;h<=10;h++)
					if(maxx<max(w,h)&&maxy<min(w,h))ans[n][w][h]++;
		}
	}
}
int main(){
	Get_table();
	while(cin>>n>>w>>h)printf("%d\n",ans[n][w][h]);
}



来源  spark uva1602
这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值