题目: Largest Rectangle in Histogram
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area = 10
unit.
For example,
Given height = [2,1,5,6,2,3]
,
return 10
.
解法一: 这样的题目一般都有O(n)的解法,因为O(n2)的解法实在是太显而易见了。
可悲的是,本娃就只写出了后者。。。代码如下:
1 public int largestRectangleArea(int[] height) { 2 // Start typing your Java solution below 3 // DO NOT write main() function 4 int[] min = new int[height.length]; 5 int maxArea = 0; 6 for(int i = 0; i < height.length; i++){ 7 if(height[i] != 0 && maxArea/height[i] >= (height.length - i)) { 8 continue; 9 } 10 for(int j = i; j < height.length; j++){ 11 if(i == j) min[j] = height[j]; 12 else { 13 if(height[j] < min[j - 1]) { 14 min[j] = height[j]; 15 }else min[j] = min[j-1]; 16 } 17 int tentativeArea = min[j] * (j - i + 1); 18 if(tentativeArea > maxArea) { 19 maxArea = tentativeArea; 20 } 21 } 22 } 23 return maxArea; 24 }
基本思想就是遍历所有[i, j],并在过程中找出中间最矮的bar,得出从i到j的矩形面积。
不过我就知道,一定有大神用他们极简的代码来切题,下面就是一个。
解法二:
1 public int largestRectangleArea2(int[] height) { 2 Stack<Integer> stack = new Stack<Integer>(); 3 int i = 0; 4 int maxArea = 0; 5 int[] h = new int[height.length + 1]; 6 h = Arrays.copyOf(height, height.length + 1); 7 while(i < h.length){ 8 if(stack.isEmpty() || h[stack.peek()] <= h[i]){ 9 stack.push(i++); 10 }else { 11 int t = stack.pop(); 12 maxArea = Math.max(maxArea, h[t] * (stack.isEmpty() ? i : i - stack.peek() - 1)); 13 } 14 } 15 return maxArea; 16 }
16行,给跪了。。。。
这个我不去debug下都特么不知道在干嘛。
那要不就debug下看看这段代码在做神马。例子就用题目中的[2,1,5,6,2,3]吧。
首先,如果栈是空的,那么索引i入栈。那么第一个i=0就进去吧。注意栈内保存的是索引,不是高度。然后i++。
然后继续,当i=1的时候,发现h[i]小于了栈内的元素,于是出栈。(由此可以想到,哦,看来stack里面只存放单调递增的索引)
这时候stack为空,所以面积的计算是h[t] * i.t是刚刚弹出的stack顶元素。也就是蓝色部分的面积。
继续。这时候stack为空了,继续入栈。注意到只要是连续递增的序列,我们都要keep pushing,直到我们遇到了i=4,h[i]=2小于了栈顶的元素。
这时候开始计算矩形面积。首先弹出栈顶元素,t=3。即下图绿色部分。
接下来注意到栈顶的(索引指向的)元素还是大于当前i指向的元素,于是出栈,并继续计算面积,桃红色部分。
最后,栈顶的(索引指向的)元素大于了当前i指向的元素,循环继续,入栈并推动i前进。直到我们再次遇到下降的元素,也就是我们最后人为添加的dummy元素0.
同理,我们计算栈内的面积。由于当前i是最小元素,所以所有的栈内元素都要被弹出并参与面积计算。
注意我们在计算面积的时候已经更新过了maxArea。
总结下,我们可以看到,stack中总是保持递增的元素的索引,然后当遇到较小的元素后,依次出栈并计算栈中bar能围成的面积,直到栈中元素小于当前元素。
可是为什么这个方法是正确的呢? 我也没搞清楚。只是觉得不明觉厉了。
-------------------------------------------------更新----------------------------------------------------------------
可以这样理解这个算法,看下图。
例如我们遇到最后遇到一个递减的bar(红色)。高度位于红线上方的(也就是算法中栈里面大于最右bar的)元素,他们是不可能和最右边的较小高度bar围成一个比大于在弹栈过程中的矩形面积了(黄色面积),因为红色的bar对他们来说是一个短板,和红色bar能围成的最大面积也就是红色的高度乘以这些“上流社会”所跨越的索引范围。但是“上流社会”的高度个个都比红色bar大,他们完全只计算彼此之间围成的面积就远远大于和红色bar围成的任意面积了。所以红色bar是不可能参与“上流社会”的bar的围城的(好悲哀)。
但是屌丝也不用泄气哦。因为虽然长度不占优势,但是团结的力量是无穷的。它还可以参与“比较远的”比它还要屌丝的bar的围城。他们的面积是有可能超过上流社会的面积的,因为距离啊!所以弹栈到比红色bar小就停止了。
另外一个细节需要注意的是,弹栈过程中面积的计算。
h[t] * (stack.isEmpty() ? i : i - stack.peek() - 1)
h[t]是刚刚弹出的栈顶端元素。此时的面积计算是h[t]和前面的“上流社会”能围成的最大面积。这时候要注意哦,栈内索引指向的元素都是比h[t]小的,如果h[t]是目前最小的,那么栈内就是空哦。而在目前栈顶元素和h[t]之间(不包括h[t]和栈顶元素),都是大于他们两者的。如下图所示:
那h[t]无疑就是Stack.Peek和t之间那些上流社会的短板啦,而它们的跨越就是i - Stack.Peek - 1。
所以说,这个弹栈的过程也是维持程序不变量的方法啊:栈内元素一定是要比当前i指向的元素小的。
----------------------------------------------------------------------------------华丽------------------------------------------------------------------------------------------------------------------------
我只想问算法的作者,他们到底是怎么想出来的,在这么短的时间内。是不是有一些类似的研究或者算法给他们以灵感?
太有画面感了有木有!
===============================题目: Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
leetcode的题目真是越来越经典了。比如这个题目,就是一道男默女泪的题。
一般人拿到这个题目,除非做过类似的,很难一眼找出一个方法来,更别说找一个比较优化的方法了。
首先一个难点就是,你怎么判断某个区域就是一个矩形呢?
其次,以何种方式来遍历这个2D的matrix呢?
一般来说,对这种“棋盘式”的题目,像什么Queen啦,象棋啦,数独啦,如果没有比较明显的遍历方式,可以采用一行一行地遍历。(好像废话哦。。。)
然后,当遍历到(i, j)的时候,该做什么样的事情呢?想想,嗯,那我可不可以简单看看,以(i,j)为矩形左上角,能不能形成一个矩形,能不能形成多个矩形?那形成的矩形中,我们能不能找一个最大的呢?(有同学问,为毛你要以这个点为左上角,不为左下角,或者其他脚哩?因为我们打算从左到右,从上到下一行一行遍历嘛,这样就不会漏掉,说不定还能做一些优化)
首先,如果(i, j)是0,那肯定没法是矩形了。
如果是1,那么我们怎么找以它为左上角的矩形呢?呼唤画面感!
。。。你TM在逗我?==b
图中圈圈表示左上角的1,那么矩形的可能性是。。。太多啦,怎么数嘛!
我们可以试探地从左上角的1所在的列开始,往下数数,然后呢,比如在第一行,例如是蓝色的那个矩形,我们看看在列上,它延伸了多远,这个面积是可以算出来的。
然后继续,第二行,例如是那个红色的矩形,再看它延伸到多远,哦,我们知道,比第一行近一些,我们也可以用当前离第一行的行数,乘以延伸的距离,得到当前行表示的矩形面积。
但是到了第一个虚线的地方,它远远超过了上面的其他所有行延伸的距离了,注意它的上方都是空心的哦,所以,我们遇到这种情况,计算当前行和左上角1围成的面积的时候,只能取所有前面最小的延伸距离乘以当前离第一行的行数。其实,这对所有情况都是这样的,是吧?于是,我们不是就有方法遍历这些所有的矩形了嘛。
代码如下:
1 /** 2 * 以给出的坐标作为左上角,计算其中的最大矩形面积 3 * @param matrix 4 * @param row 给出坐标的行 5 * @param col 给出坐标的列 6 * @return 返回最大矩形的面积 7 */ 8 private int maxRectangle(char[][] matrix, int row, int col) { 9 int minWidth = Integer.MAX_VALUE; 10 int maxArea = 0; 11 for (int i = row; i < matrix.length && matrix[i][col] == '1'; i++) { 12 int width = 0; 13 while (col + width < matrix[row].length 14 && matrix[i][col + width] == '1') { 15 width++; 16 } 17 if (width < minWidth) {// 如果当前宽度小于了以前的最小宽度,更新它,为下面的矩形计算做准备 18 minWidth = width; 19 } 20 int area = minWidth * (i - row + 1); 21 if (area > maxArea) 22 maxArea = area; 23 } 24 return maxArea; 25 }
这样,我们再对每个点都调用一下上面的这个方法,不是就能求出最大面积了么。
解法一:
public int maximalRectangle(char[][] matrix) { // Start typing your Java solution below // DO NOT write main() function int m = matrix.length; int n = m == 0 ? 0 : matrix[0].length; int maxArea = 0; for(int i = 0; i < m; i++){//row for(int j = 0; j < n; j++){//col if(matrix[i][j] == '1'){ int area = maxRectangle(matrix, i, j); if(area > maxArea) maxArea = area; } } } return maxArea; }
这个需要O(n3),所以没有通过大集合的测试。
leetcode的讨论组给出了一个比较难理解的方法,这里就不采用了。
说说第三个方法。前一个笔记,我们讨论了柱状图的最大矩形面积,那可以O(n)的,学以致用呀!btw,leetcode的这两题也是挨一块儿的,用心良苦。。。。
如果我们把每一行看成x坐标,那高度就是从那一行开始往上数的1的个数。带入我们的maxAreaInHist方法,在O(n2)时间内就可以求出每一行形成的“柱状图”的最大矩形面积了。它们之中最大的,就是我们要的答案。
代码如下:
1 public int maximalRectangle2(char[][] matrix) { 2 int m = matrix.length; 3 int n = m == 0 ? 0 : matrix[0].length; 4 int[][] height = new int[m][n + 1]; 5 //actually we know that height can just be a int[n+1], 6 //however, in that case, we have to write the 2 parts together in row traverse, 7 //which, leetcode just doesn't make you pass big set 8 //所以啊,leetcode是喜欢分开写循环的,即使时间复杂度一样,即使可以节约空间 9 int maxArea = 0; 10 for(int i = 0; i < m; i++){ 11 for(int j = 0; j < n; j++) { 12 if(matrix[i][j] == '0'){ 13 height[i][j] = 0; 14 }else { 15 height[i][j] = i == 0 ? 1 : height[i - 1][j] + 1; 16 } 17 } 18 } 19 for(int i = 0; i < m; i++){ 20 int area = maxAreaInHist(height[i]); 21 if(area > maxArea){ 22 maxArea = area; 23 } 24 } 25 return maxArea; 26 } 27 28 private int maxAreaInHist(int[] height){ 29 Stack<Integer> stack = new Stack<Integer>(); 30 int i = 0; 31 int maxArea = 0; 32 while(i < height.length){ 33 if(stack.isEmpty() || height[stack.peek()] <= height[i]){ 34 stack.push(i++); 35 }else { 36 int t = stack.pop(); 37 maxArea = Math.max(maxArea, height[t] * (stack.isEmpty() ? i : i - stack.peek() - 1)); 38 } 39 } 40 return maxArea; 41 }
这里有一个和leetcode相关的细节。就是本来在计算height数组的时候,我们没有必要分配成代码中的那个样子,一维就可以了,然后在遍历每一行的时候计算当前行的height数组,然后再计算maxArea。这种情况下还是过不了大集合,所以不得不为每一行都保存一个height,先期计算该二维数组。
总结:
1. 学到的新知识要用;
2. 画面感和逻辑分析都很重要,不可偏非。
============================
一群高度不完全相同的牛从左到右站成一排,每头牛只能看见它右边的比它矮的牛的发型,若遇到一头高度大于或等于它的牛,则无法继续看到这头牛后面的其他牛。
给出这些牛的高度,要求每头牛可以看到的牛的数量的和。
把要求作一下转换,其实就是要求每头牛被看到的次数之和。这个可以使用单调栈来解决。
从左到右依次读取当前牛的高度,从栈顶开始把高度小于或等于当前牛的高度的那些元素删除,此时栈中剩下的元素的数量就是可以看见当前牛的其他牛的数量。把这个数量加在一起,就可以得到最后的答案了。