在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
分析
可以认为为了用1更少的弓箭射爆气球,那么则需要射在气球交叉尽可能多的地方。
我们可以考虑对气球作标进行排序,比如把左点从小到大排序。
此时我们需要在第一个球的区间射一箭,之后我们看第二个气球,若与第一个气球存在交叉,即满足左边坐标<上一个气球的右边坐标。此时只需要射在交叉的位置即可。如果左边坐标超过了上一个气球的右边坐标,那么则认为需要再加一只弓箭。
# import List
class Solution:
def findMinArrowShots(self, points: List[List[int]]) -> int:
points = sorted(points, key = lambda point : point[1])
print(points)
prev_lf, prev_rg = -inf, -inf
num = 0
for point in points:
if prev_rg < point[0] or prev_rg == -inf:
num += 1
prev_lf = point[0]
prev_rg = point[1]
elif prev_rg >= point[0]:
prev_lf = point[0]
# print(prev_lf, prev_rg)
return num