暑期入门训练(欧几里德定理,扩展)

题目则是经典的青蛙约会。

欧几里德定理:gcd(a,b) = gcd(b,a mod b)

扩展欧几里德:求. a * x + b * y = c的整数解

int exGcd(int a, int b, int &x, int &y)
  {
  if(b == 0)
  {
  x = 1;
  y = 0;
   return a;
  }
  int r = exGcd(b, a % b, x, y);
  int t = x;
  x = y;
  y = t - a / b * y;
   return r;
  }//返回值为最大公约数,在求解过程中不断修改x,y


欧几里德定理:

证明:gcd(a,b)=gcd(b,a%b)

a可以表示成a = kb + r,则r = a mod b

  假设d是a,b的一个公约数,则有

  d|a, d|b,而r = a - kb,因此d|r

  因此d是(b,a mod b)的公约数

  假设d 是(b,a mod b)的公约数,则

  d | b , d |r ,但是a = kb +r

  因此d也是(a,b)的公约数

  因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证(到最后就只有一个公约数,则最大也为这个)


recursion

loop until b==0
1. ax1+by1=gcd(a,b)
2. gcd(a,b)=gcd(b,a%b)
3. bx2+a%by2=gcd(a,b)
4. ax1+by1=bx2+a%by2

5. bx2+a%by2=bx2+(a-a/b)by2    x1=by2; y1=x2-(a/b)*y2


1、先计算Gcd(a,b),若n不能被Gcd(a,b)整除,则方程无整数解;否则,在方程两边同时除以Gcd(a,b),得到新的不定方程a' * x + b' * y = c',此时Gcd(a',b')=1;
2、利用上面所说的欧几里德算法求出方程a' * x + b' * y = 1的一组整数解x0,y0,则c' * x0,c' * y0是方程a' * x + b' * y = c'的一组整数解;
  3、根据数论中的相关定理,可得方程a' * x + b' * y = c'的所有整数解为:

    其实我们求得的解只是一组,

    a*x0+lcm(a,b)+b*y0-lcm(a,b)=1;

    a*x                +b*y              =1;

    x=x0+b/gcd(a,b);     y=y0-a/gcd(a,b);

    a/gcd(a,b)*x'+b/gcd(a,b)*y'=c/gcd(a,b);

    x'=c/gcd(a,b)*x0 + b/gcd(a,b);      y'=c/gcd(a,b)*y0 - a/gcd(a,b);

x = c' * x0 + b' * t
y = c' * y0 - a' * t
(t为整数)
    上面的解也就是a * x + b * y = n 的全部整数解

如果是互质的正整数,是整数,且方程
ax+by=c(1)
有一组整数解x0y0则此方程的一切整数解可以表示为
x=x0+bt;y=y0-at;t∈z

扩展欧几里德算法

基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

证明:设 a>b。

  1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

  2,ab!=0 时

  设 ax1+by1=gcd(a,b);

  bx2+(a mod b)y2=gcd(b,a mod b);

  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);

  则:ax1+by1=bx2+(a mod b)y2;

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

  根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;

     这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

   上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。



有了这些理论,再来看这道题目。

#include <stdio.h>
#include <math.h>
__int64 gcd(__int64 a,__int64 b)
{
	if(b==0)
		return a;
	return gcd(b,a%b);
}
void exgcd(__int64 a,__int64 b,__int64 *x,__int64 *y)
{
	__int64 r;
	if(b==0)
	{
		*x=1;
		*y=0;
		return;
	}
	exgcd(b,a%b,x,y);
	r=*x;
	*x=*y;
	*y=r-a/b* (*y);

}
int main()
{
    __int64 x,y,m,n,L,i,j,k,a,b,c;
	while(scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&L)!=EOF)
	{
		a=n-m;
		b=L;
		c=x-y;
		k=gcd(a,b);
		if(c%k!=0 || m==n)
		{
			printf("Impossible\n");
			continue;
		}
		a/=k;
		b/=k;
		c/=k;
		exgcd(a,b,&x,&y);
		x*=c;
		y*=c;
		x=(x%b+b)%b;
		printf("%d\n",x);
	}
    return 0;
}

延伸:

(2)求解模线性方程

同余方程 ax≡b (mod n) (也就是 ax % n = b) 对于未知数 x 有解,当且仅当 gcd(a,n) | b (也就是 b % (gcd(a,n))==0 )。且方程有解时,方程有 gcd(a,n) 个解。

求解方程 ax≡b (mod n) 相当于求解方程 ax+ ny= b, (x, y为整数)

(3)求解模的逆元;

同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。

在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。

这时称求出的 x 为 a 的对模 n 乘法的逆元。

对于同余方程 ax= 1(mod n ), gcd(a,n)= 1 的求解就是求解方程

ax+ ny= 1,x, y 为整数。这个可用扩展欧几里德算法求出,原同余方程的唯一解就是用扩展欧几里德算法得出的 x 。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值