吐槽一下,刚做完两个状压的题,想着是一样的思路。没想到被坑了
有点类似于图论题目中不用邻接矩阵而用存储点将数据规模从 输入范围->输入量
刚开始看题以为是攻击范围也不能重合,于是就是考虑到4次的范围。然后就是i-1,j-2两行如何组合而成。
果断TLE,如果用dp[maxn][1<<10][1<<10],MLE,TLE。(如果跟所有之前行有关系就是dfs了)
dp[i][j][k] 本行是i,上行是j,再上行是k的炮兵数。这里的ijk是now[] last1[] last2[]中的坐标
之前的思路是枚举10个的状态,但是没必要,没有那么多状态。10个方格的组合情况其实至多就只有45种(一行至多2个),可以换成存储个数
有点类似于图论题目中不用邻接矩阵而用存储点将数据规模从 输入范围->输入量
刚开始看题以为是攻击范围也不能重合,于是就是考虑到4次的范围。然后就是i-1,j-2两行如何组合而成。
果断TLE,如果用dp[maxn][1<<10][1<<10],MLE,TLE。(如果跟所有之前行有关系就是dfs了)
dp[i][j][k] 本行是i,上行是j,再上行是k的炮兵数。这里的ijk是now[] last1[] last2[]中的坐标
之前的思路是枚举10个的状态,但是没必要,没有那么多状态。10个方格的组合情况其实至多就只有45种(一行至多2个),可以换成存储个数
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define inf 0x3f3f3f3f
const double eps=1e-8;
using namespace std;
int dp[70][70];
int bef[70][70];
int now[70],val[70];
int last1[70],last2[70];
int nowcnt,last1cnt,last2cnt;
char maps[110][12];
int n,m;
void dfs(int r,int p,int s,int cnt)
{
if(p>=m){val[nowcnt]=cnt;now[nowcnt++]=s;return;}
if(maps[r][p]=='P')
dfs(r,p+3,s|(1<<p),cnt+1);//影响多行直接后跳多次就可以了不用在判断前面有没有,原先这里写繁琐了
dfs(r,p+1,s,cnt);
}
/*这道题卡时间卡的太厉害了,,,注释的清零的地方都是当时卡的原因*/
int main()
{
while(~scanf("%d%d",&n,&m) )
{
for(int i=0;i<n;i++) scanf("%s",maps+i);
//memset(dp,0,sizeof(dp));
//memset(bef,0,sizeof(bef));
last1[0]=last2[0]=bef[0][0]=0;
last1cnt=last2cnt=1;int ans=0;
for(int i=0;i<n;i++){
nowcnt=0;
dfs(i,0,0,0);
for(int i=0;i<nowcnt;i++)for(int j=0;j<last1cnt;j++) dp[i][j]=0;
for(int j=0;j<last2cnt;j++)//上上行选择第几个方案
for(int k=0;k<last1cnt;k++)//上一行选择第几个方案
for(int u=0;u<nowcnt;u++){//本行选择第几个方案
if(now[u] & last1[k]) continue;
if(now[u] & last2[j]) continue;
dp[u][k]=max(dp[u][k],bef[k][j]+val[u]);
ans=max(ans,dp[u][k]);
}
for(int i=0;i<nowcnt;i++)for(int j=0;j<last1cnt;j++) bef[i][j]=dp[i][j];
for(int i=0;i<last1cnt;i++) last2[i]=last1[i];
for(int i=0;i<nowcnt;i++) last1[i]=now[i];
last2cnt=last1cnt;last1cnt=nowcnt;
}
cout<<ans<<endl;
}
return 0;
}