不管是几进制,都用的是逻辑上概念,(上次六进制是用来转化多维数据)核心思路是TSP。这里的预处理比较巧妙,计算出了每种状态下各个位上的模vis[][]。
TSP:dp[i][j] 在i状态下,以j结尾的最优解。两种转移都行:我为人人,人人为我。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define maxn 60000
#define inf 0x3f3f3f3f
const double eps=1e-8;
using namespace std;
int dp[maxn][12];
int maps[13][12];
int vis[maxn][12];
int state[12];
int n,m;
void init()
{
state[0]=1;
for(int i=1;i<11;i++)
state[i]=state[i-1]*3;
for(int i=0;i<=state[10];i++)
{
int x=i;
for(int j=0;j<10;j++)
vis[i][j]=x%3,x/=3;
}
}
int main()
{
// freopen("in.txt","r",stdin);
while(~scanf("%d%d",&n,&m) )
{
init();
memset(maps,0x3f,sizeof(maps));
for(int i=0;i<m;i++)
{
int u,v,k;
scanf("%d%d%d",&u,&v,&k);
maps[u-1][v-1]=maps[v-1][u-1]=min(maps[u-1][v-1],k);
}
int tag,ans=inf;
memset(dp,0x3f,sizeof(dp));
for(int i=0;i<n;i++) dp[state[i]][i]=0;
for(int i=0;i<state[n];i++)
{
tag=1;
for(int j=0;j<n;j++)
{
if(vis[i][j]==0) tag=0;//这个判断特别巧妙,因为j会循环,里面存放了i的情况
if(dp[i][j]==inf) continue;
for(int k=0;k<n;k++)
{
if( k!=j && vis[i][k]<2 && maps[k][j]!=inf)
dp[i+state[k] ][k]=min( dp[i+state[k] ][k],dp[ i ][j]+maps[j][k] );//上次写的那个是前向后,这个是后向前,比较好写。人人为我,我为人人
}
}
if(tag)
for(int j=0;j<n;j++) ans=min(ans,dp[i][j]);
}
if (ans == inf) ans = -1;
cout<<ans<<endl;
}
return 0;
}