HDU 5135 Little Zu Chongzhi's Triangles(状态压缩dp+Vector)

54 篇文章 0 订阅
本文探讨了一道通过贪心算法快速解决的问题实例,并指出实际应用中可能需要动态规划进行更全面的考虑。文章还介绍了如何使用`Vector`进行预处理优化。通过实例分析和代码实现,读者可以深入了解多阶段决策问题的解决策略。
摘要由CSDN通过智能技术生成

这道题是水题,当时直接贪心就过了。

多阶段决策,其实应该用dp,他人的代码使用Vector进行预处理。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
int n, a[12];
double dp[1<<12];
double cal(int a, int b, int c){
	if(a+b<=c)	return 0.0;
	double p = (a+b+c)*0.5;
	return sqrt(p*(p-a)*(p-b)*(p-c));
}
vector<int> V;
int main(){
	while(~scanf("%d", &n) && n){
		memset(dp, 0, sizeof(dp));
		for(int i=0; i<n; i++)	scanf("%d", a+i);
		sort(a, a+n);
		V.clear();
		for(int i=0; i<n; i++){
			for(int j=i+1; j<n; j++){
				for(int k=j+1; k<n; k++){
					int st = (1<<i)|(1<<j)|(1<<k);
					dp[st] = cal(a[i], a[j], a[k]);
					if(a[i]+a[j]>a[k])	V.push_back(st);
				}
			}
		}
		for(int i=0; i<(1<<n); i++){
			for(int j=0; j<V.size(); j++){
				if(i&V[j])	continue;
				dp[i|V[j]] = max(dp[i|V[j]], dp[i]+dp[V[j]]);
			}
		}
		printf("%.2f\n", dp[(1<<n)-1]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值