Pytorch学习(一)数据类型与张量形状

Pytorch(一)数据类型与张量形状

回顾一下pytorch,顺便记录一下

import torch
import numpy as np
a = torch.FloatTensor([[1, 2], [3, 4], [5, 6]])  # 第一种创建指定张量的方法
print(a)
print("a.shape:", a.shape)  # 打印形状
#tensor([[1., 2.],[3., 4.],[5., 6.]])
# a.shape: torch.Size([3, 2])
a1 = torch.tensor([[1, 2], [3, 4], [4, 5]], dtype=torch.float) # 第二种创建指定张量的方法(推荐)
print(a1)
#tensor([[1., 2.],[3., 4.],[5., 6.]])
print("a.size:", a.size())
# a.size: torch.Size([3, 2])
print("a.dtype:", a.dtype)  # 打印数据类型
# a.dtype: torch.float32
print("a.numel:", a.numel())  # 返回元素的个数
# a.numel: 6

b = a.view(1, -1)
print('b:', b)
# b: tensor([[1., 2., 3., 4., 5., 6.]])
print('b.shape:', b.shape)  # view方法,被赋值的张量大小必须与原张量相同,相当于numpy中的reshape

# b.shape: torch.Size([1, 6])


c = a.resize_(2, 4)  # resize可以随即大小并保留之前的值
print('c:', c)
# c: tensor([[1.0000e+00, 2.0000e+00, 3.0000e+00, 4.0000e+00],[5.0000e+00, 6.0000e+00, 1.2121e+04, 7.1846e+22]])
print('c.shape:', c.shape)
# c.shape: torch.Size([2, 4])
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值