字典树算法基础

一、概述

前缀树,又称字典树。它是一棵 N 叉树。前缀树用于存储、查找字符串。前缀树的每一个结点代表一个字符串的前缀。每一个结点会有多个子结点,通往不同子结点的路径上有着不同的字符。子结点代表的字符串是由结点本身的原始字符串 ,以及通往该子结点路径上所有的字符组成的。
前缀树的一个重要的特性是,结点所有的后代都与该结点相关的字符串有着共同的前缀,这是前缀树名称的由来。
Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查

在这里插入图片描述
Trie又被称为前缀树、字典树,所以当然是一棵树。上面这棵Trie树包含的字符串集合是{in, inn, int, tea, ten, to}。每个节点的编号是我们为了描述方便加上去的。树中的每一条边上都标识有一个字符。这些字符可以是任意一个字符集中的字符。比如对于都是小写字母的字符串,字符集就是’a’-‘z’;对于都是数字的字符串,字符集就是’0’-‘9’;对于二进制字符串,字符集就是0和1。
比如上图中3号节点对应的路径0123上的字符串是inn,8号节点对应的路径0568上的字符串是ten。终结点与集合中的字符串是一一对应的。

二、原理

下面我们来讲一下对于给定的字符串集合{W1, W2, W3, … WN}如何创建对应的Trie树。其实上Trie树的创建是从只有根节点开始,通过依次将W1, W2, W3, … WN插入Trie中实现的。所以关键就是之前提到的Trie的插入操作。
具体来说,Trie一般支持两个操作:

  1. Trie.insert(W):第一个操作是插入操作,就是将一个字符串W加入到集合中。
  2. Trie.search(S):第二个操作是查询操作,就是查询一个字符串S是不是在集合中。

假设我们要插入字符串”in”。我们一开始位于根,也就是0号节点,我们用P=0表示。我们先看P是不是有一条标识着i的连向子节点的边。没有这条边,于是我们就新建一个节点,也就是1号节点,然后把1号节点设置为P也就是0号节点的子节点,并且将边标识为i。最后我们移动到1号节点,也就是令P=1。
在这里插入图片描述
这样我们就把”in”的i字符插入到Trie中了。然后我们再插入字符n,也是先找P也就是1号节点有没有标记为n的边。还是没有,于是再新建一个节点2,设置为P也就是1号节点的子节点,并且把边标识为n。最后再移动到P=2。这样我们就把n也插入了。由于n是”in”的最后一个字符,所以我们还需要将P=2这个节点标记为终结点。
在这里插入图片描述
现在我们再插入字符串”inn”。过程也是一样的,从P=0开始找标识为i的边,这次找到1号节点。于是我们就不用创建新节点了,直接移动到1号节点,也就是令P=1。再插入字符n,也是有2号节点存在,所以移动到2号节点,P=2。最后再插入字符n这时P没有标识为n的边了,所以新建3号节点作为2号节点的子节点,边标识为n,同时将3号节点标记为终结点:
在这里插入图片描述
将后面的字符串int tea ten to都插入之后,就得到了我们一开始给出的Trie:
在这里插入图片描述
综上所述,在Trie中插入一个字符串W的伪代码如下:
在这里插入图片描述
下面我们再讲一下如何查询Trie树中是不是包含字符串S,也就是之前提到的查找操作。查找其实比较简单。我们只要从根节点开始,沿着标识着S[1] -> S[2] -> S[3] … -> S[S.len]的边移动,如果最后成功到达一个终结点,就说明S在Trie树中;如果最后无路可走,或者到达一个不是终结点的节点,就说明S不在Trie树中。
在这里插入图片描述
如果是查找”te”,就会从0开始经过5最后到达6。但是6不是终结点,所以te没在Trie树中。如果查找的是”too”,就会从0开始经过5和9,然后发现之后无路可走:9号节点没有标记为o的边连出去。所以too也不在Trie中
综上所述,在Trie树中查找一个字符串的伪代码如下:
在这里插入图片描述

三、代码展示

数组方式实现
要写代码实现一个Trie首先就要确定如何存储一个Trie结构。这里用一个二维数组来存储:

int trie[MAX_NODE][CHARSET];
int k;

其中MAX_NODE是trie中最大能存储的节点数目,CHARSET是字符集的大小,k是当前trie中包含有多少个节点。Trie[i][j]的值是0表示trie树中i号节点,并没有一条连出去的边,满足边上的字符标识是字符集中第j个字符(从0开始);trie[i][j]的值是正整数x表示trie树中i号节点,有一条连出去的边,满足边上的字符标识是字符集中第j个字符,并且这条边的终点是x号节点。

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int MAX_NODE = 1000000 + 10;
const int CHARSET = 26;
int trie[MAX_NODE][CHARSET] = {0};
int color[MAX_NODE] = {0};
int k = 1;

void insert(char *w){
    int len = strlen(w);
    int p = 0;
    for(int i=0; i<len; i++){
        int c = w[i] - 'a';
        if(!trie[p][c]){
            trie[p][c] = k;
            k++;
        }
        p = trie[p][c];
    }
    color[p] = 1;
}

int search(char *s){
    int len = strlen(s);
    int p = 0;
    for(int i=0; i<len; i++){
        int c = s[i] - 'a';
        if(!trie[p][c]) return 0;
        p = trie[p][c];
    }
    return color[p] == 1;
}

int main(){
    int t,q;
    char s[20];
    scanf("%d%d", &t,&q);
    while(t--){
        scanf("%s", s);
        insert(s);
    }
    while(q--){
        scanf("%s", s);
        if(search(s)) printf("YES\n");
        else printf("NO\n");
    }
    return 0;
}

四、例题

请你实现 Trie 类:
Trie() 初始化前缀树对象。
void insert(String word) 向前缀树中插入字符串 word 。
boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false。
boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。

/**
 * Your Trie object will be instantiated and called as such:
 * Trie* obj = new Trie();
 * obj->insert(word);
 * bool param_2 = obj->search(word);
 * bool param_3 = obj->startsWith(prefix);
 */
class Trie {
private:
    vector<Trie*> children;
    bool isEnd;

    Trie* searchPrefix(string prefix) {
        Trie* node = this;
        for (char ch : prefix) {
            ch -= 'a';
            if (node->children[ch] == nullptr) {
                return nullptr;
            }
            node = node->children[ch];
        }
        return node;
    }

public:
    Trie() : children(26), isEnd(false) {}

    void insert(string word) {
        Trie* node = this;
        for (char ch : word) {
            ch -= 'a';
            if (node->children[ch] == nullptr) {
                node->children[ch] = new Trie();
            }
            node = node->children[ch];
        }
        node->isEnd = true;
    }

    bool search(string word) {
        Trie* node = this->searchPrefix(word);
        return node != nullptr && node->isEnd;
    }

    bool startsWith(string prefix) {
        return this->searchPrefix(prefix) != nullptr;
    }
};

输入 :
[“Trie”, “insert”, “search”, “search”, “startsWith”, “insert”, “search”] [[], [“apple”], [“apple”], [“app”], [“app”], [“app”], [“app”]]
输出 :
[null, null, true, false, true, null, true]

解释 Trie trie = new Trie();
trie.insert(“apple”);
trie.search(“apple”); // 返回 True
trie.search(“app”); // 返回 False
trie.startsWith(“app”); // 返回 True
trie.insert(“app”);
trie.search(“app”); // 返回 True

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码上生花

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值