微积分
文章平均质量分 71
微积分学习文章
码上生花
强者创造时代,能者顺应时代,弱者繁衍后代。
展开
-
微积分 - 泰勒公式
所以我们就得到了泰勒公式的定义:如果函数 f(x)在含 x0的某个开区间 (a,b)内具有直到 (n+1) 阶导数,则对 ∀x∈(a,b),有其中余项 (即误差), ξ 在 x0 与 x 之间。泰勒公式的余项表达方式有好几种,前面这种表是方法称为n阶泰勒展开式的拉格朗日余项。拉格朗日余项即是n阶泰勒公式又多展开了一阶,n变为n+1。注意,这里的余项即为误差,因为使用多项式函数在某点展开,逼近给定函数,最后肯定会有一丢丢的误差,我们称之为余项。原创 2023-10-19 16:00:13 · 850 阅读 · 0 评论 -
微积分 - 洛必达法则的四种类型
考虑如下形式的极限:。因为f和g都是可导函数,所以可在x=a点对他们进行线性化有:和。现在,假设f(a)和g(a)都为0,这说明和。如果f(x)除以g(x),假设则有这就是洛必达法则。原创 2023-10-16 00:51:55 · 3102 阅读 · 0 评论 -
微积分 - 对数函数与指数函数的导数
我们如何来简化这个杂乱的公式呢?看到这里问题已经解决了,但这只是对数函数的倒数,那吴彦祖可能就要问了:那指数函数的导数那?这下各位吴彦祖就满意了吧,但是还没完,接下来的定理才是本篇文章的核心。,这也正是为什么以e为底的对数被称为自然对数的原因之一了。,那么g的导数是什么?等等我们是不是还没有解答原本的问题那?,当h趋于0时会怎么样?的几阶倒数都是一样的。原创 2023-10-10 13:19:02 · 1459 阅读 · 0 评论 -
微积分 - 隐函数求导的应用
设想有一架飞机在2000公里的高空以500公里每秒的速度远离你,同时不久之前有一个跳伞员在距你1000公里远上从直升机上跳下,垂直以10公里每秒的速度落地。此外,假设水箱底部有一个小洞,致使水箱中的水以每一立方米的水以一立方米的速度向外流水(这里要注意漏水的速度可不是1立方米/秒),这种情况下,水位的变换速率是多少?假设有两辆汽车A和B,汽车A向北以55公里/小时的速度远离你家,而汽车B向西以45公里/小时的速度靠近你家,当A到达你家北面21公里,B到达你家东面28公里时,两辆汽车间的距离变化率是多少。原创 2023-10-08 17:30:53 · 1245 阅读 · 0 评论 -
微积分 - 导数
导数,也为叫导函数值。又名微商,是微积分中的重要基础概念,导数可以理解为自变量的变化趋势,下面用一个图去展示:当 y = f ( x ) 的自变量 x 在一点上产生一个增量 Δ x 时,函数输出值的增量 Δ y与自变量增量 Δ x 的比值在 Δ x 趋于 0 的极限。原创 2023-10-03 20:01:33 · 3761 阅读 · 0 评论