离散型随机变量及其分布律

分布律

  • 设离散型随机变量 X X X 的可能取值为 x 1 , x 2 , ⋯ x_1, x_2, \cdots x1,x2,,且 X X X 的这些取值的概率记为
    P { X = x k } = p k , k = 1 , 2 , ⋯ (1) P\{X=x_k\}=p_k, k=1,2,\cdots \tag{1} P{X=xk}=pk,k=1,2,(1)
    ( 1 ) (1) (1) 式称为离散型随机变量的 分布律

  • 分布律(分布列)也可以用这样的表格给出:

X X X x 1 x_1 x1 x 2 x_2 x2 ⋯ \cdots x k x_k xk ⋯ \cdots
p k p_k pk p 1 p_1 p1 p 2 p_2 p2 ⋯ \cdots p k p_k pk ⋯ \cdots

概率质量函数(似乎就是分布律)

  • 设离散型随机变量 X X X 的可能取值为 x 1 , x 2 , ⋯ x_1, x_2, \cdots x1,x2,,且 X X X 的这些取值的概率记为
    P ( X = x k ) = p k , k = 1 , 2 , ⋯ (2) P(X=x_k)=p_k, k=1,2, \cdots \tag{2} P(X=xk)=pk,k=1,2,(2)
    ( 2 ) (2) (2) 式称为离散型随机变量的 概率质量函数

0-1 分布(两点分布)

  • 若试验的结果只有两种: A A A A ˉ \bar A Aˉ,则称此类实验为 伯努利试验。如果随机变量 X X X 只有两种取值 { 0 , 1 } \{0, 1\} {0,1},且分布律为
    P { X = k } = p k ( 1 − p ) 1 − k ,    k = 0 , 1 P\{X=k\}=p^k(1-p)^{1-k}, \; k=0,1 P{X=k}=pk(1p)1k,k=0,1
    则称 X X X 服从参数为 p p p 的两点分布。

二项分布(伯努利分布)

  • n n n 重伯努利试验是指独立、重复地进行 n n n伯努利试验。如果随机变量 X X X 的取值范围为 { 0 , 1 , 2 , ⋯   , n } \{0, 1, 2, \cdots, n\} {0,1,2,,n} 且分布律为
    P { X = k } = C n k p k ( 1 − p ) n − k ,    k = 0 , 1 , ⋯   , n P\{X=k\}=C_n^kp^k(1-p)^{n-k},\;k=0,1,\cdots,n P{X=k}=Cnkpk(1p)nk,k=0,1,,n
    则称 X X X 服从参数为 n , p n, p n,p 的二项分布,记作 X ∼ B ( n , p ) X\sim B(n, p) XB(n,p)

泊松分布 (敲黑板)

  • 若随机变量 X X X 的分布律为
    P { X = k } = e − λ λ k k ! P\{X=k\}=\frac{e^{-\lambda}\lambda^k}{k!} P{X=k}=k!eλλk
    其中 λ \lambda λ 大于零为常数,则称 X X X 服从参数为 λ \lambda λ 的泊松分布,记作 X ∼ π ( λ ) X\sim \pi(\lambda) Xπ(λ)

  • 泊松分布多用于表示在一定的时间或空间内某个事件出现的次数,其中 λ \lambda λ 是该时间/空间内,随机事件的平均发生率。二项分布可以看作是泊松分布在离散时间/空间上的特例。

泊松小数定律

现在,假设 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p),我们希望观察当 n → ∞ n\to \infty n 时, P ( X = k ) P(X=k) P(X=k) 的值。

根据 e e e 的定义 e = lim ⁡ n → ∞ ( 1 − 1 n ) − n = lim ⁡ n → ∞ ( 1 − λ n ) − n / λ e=\lim_{n\to\infty}(1-\frac 1 n)^{-n}=\lim_{n\to\infty}(1-\frac \lambda n)^{-n/\lambda} e=limn(1n1)n=limn(1nλ)n/λ 得到:
e − λ = lim ⁡ n → ∞ ( 1 − λ n ) n = lim ⁡ n → ∞ ( 1 − λ n ) n − k ⋅ ( 1 − λ n ) k = lim ⁡ n → ∞ ( 1 − λ n ) n − k e^{-\lambda}=\lim_{n\to\infty}(1-\frac \lambda n)^n=\lim_{n\to\infty}(1-\frac \lambda n)^{n-k}\cdot(1-\frac \lambda n)^{k}=\lim_{n\to\infty}(1-\frac \lambda n)^{n-k} eλ=nlim(1nλ)n=nlim(1nλ)nk(1nλ)k=nlim(1nλ)nk

λ \lambda λ 为该时间/空间内,随机事件的平均发生率,即 λ = E ( X ) = n p \lambda=E(X)=np λ=E(X)=np

再根据二项分布的定义,有:
P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , ⋯   , n P(X=k)=C_n^kp^k(1-p)^{n-k}, k=0,1,\cdots,n P(X=k)=Cnkpk(1p)nk,k=0,1,,n

即有:
lim ⁡ n → ∞ P ( X = k ) = lim ⁡ n → ∞ C n k p k ( 1 − p ) n − k = lim ⁡ n → ∞ n ! ( n − k ) ! k ! p k ( 1 − p ) n − k \begin{aligned}\lim_{n\to\infty}P(X=k) &= \lim_{n\to\infty}C_n^kp^k(1-p)^{n-k}\\ &= \lim_{n\to\infty}\frac{n!}{(n-k)!k!}p^k(1-p)^{n-k} \end{aligned} nlimP(X=k)=nlimCnkpk(1p)nk=nlim(nk)!k!n!pk(1p)nk

带入 p = λ / n p=\lambda/n p=λ/n 得到

lim ⁡ n → ∞ P ( X = k ) = lim ⁡ n → ∞ n ! ( n − k ) ! k ! ( λ n ) k ( 1 − λ n ) n − k = 1 k ! ⋅ lim ⁡ n → ∞ n ( n − 1 ) ⋯ ( n − k + 1 ) n ⋅ n ⋯ n ⋅ λ k ⋅ lim ⁡ n → ∞ ( 1 − λ n ) n − k = e − λ λ k k ! \begin{aligned}\lim_{n\to\infty}P(X=k) &= \lim_{n\to\infty}\frac{n!}{(n-k)!k!}\left(\frac \lambda n\right)^k\left(1-\frac \lambda n\right)^{n-k}\\ &=\frac{1}{k!}\cdot\lim_{n\to\infty}\frac{n(n-1)\cdots(n-k+1)}{n \cdot n\cdots n} \cdot \lambda ^k\cdot \lim_{n\to \infty}\left(1-\frac \lambda n\right)^{n-k}\\&=\frac{e^{-\lambda}\lambda^k}{k!}\end{aligned} nlimP(X=k)=nlim(nk)!k!n!(nλ)k(1nλ)nk=k!1nlimnnnn(n1)(nk+1)λknlim(1nλ)nk=k!eλλk

换言之,但对于一个二项分布的问题,如果 n n n 很大, p p p 很小,但 λ = n p \lambda=np λ=np 大小适中时,可以使用泊松分布近似表示。

分布函数

  • X X X 是一个随机变量, x x x 是任意实数,函数
    F ( x ) = P { X ≤ x } F(x)=P\{X\leq x\} F(x)=P{Xx}
    称为随机变量 x x x 的分布函数。
  • 分布函数的一些性质
    • P { x 1 < X ≤ x 2 } = F ( x 2 ) − F ( x 1 ) P\{x_1<X\leq x_2\}=F(x_2)-F(x_1) P{x1<Xx2}=F(x2)F(x1)
    • 0 ≤ F ( x ) ≤ 1 , F ( − ∞ ) = 0 , F ( ∞ ) = 1 0\leq F(x) \leq 1,F(-\infty)=0, F(\infty)=1 0F(x)1,F()=0,F()=1 F ( x ) F(x) F(x) 单调不下降
    • F ( x ) F(x) F(x) 是右连续函数,即 F ( x + 0 ) = F ( x ) F(x+0)=F(x) F(x+0)=F(x)
    • 对离散型随机变量 X X X,有 F ( x ) = ∑ x k ≤ x p k F(x)=\sum_{x_k \leq x}p_k F(x)=xkxpk
    • 对连续型随机变量 X X X,有 F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-\infty}^xf(t)\text{d}t F(x)=xf(t)dt,其中 f ( t ) f(t) f(t) 称为概率密度函数。
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值