概率论考研笔记(二)

概率论考研笔记(二):随机变量

  • 随机变量相关概念和性质:
概念释义性质
随机变量若随机试验E中任意事件e都对应一个单值实函数X = X(e),则称X为随机变量一般用大写字母X,Y,Z表示随机变量,以小写字母x,y,z表示其实数值
概率分布随机变量X的各个取值与其对应事件的概率的映射描述,称为X的概率分布任何一个随机变量都对应一个概率分布
分布函数 F ( x ) F(x) F(x)设X为随机变量,x是任意实数,则称函数 F ( x ) = P ( X ≤ x ) F(x) = P(X \leq x) F(x)=P(Xx)为X的分布函数①F(x)表示X在区间 ( − ∞ , x ] (-\infty,x] (,x]取值的概率
⇒ \Rightarrow 充要条件②③④
0 ≤ F ( x ) ≤ 1 0 \leq F(x) \leq 1 0F(x)1
单调不减
右连续(对于连续型随机变量,应是连续函数)
P ( X > x ) = 1 − F ( x ) P(X > x) = 1 - F(x) P(X>x)=1F(x)
P ( a < X ≤ b ) = F ( b ) − F ( a ) P(a < X \leq b) = F(b) - F(a) P(a<Xb)=F(b)F(a)
⑦若连续型随机变量的概率密度为偶函数,则有:
F ( − a ) = 1 − F ( a ) F(-a)=1-F(a) F(a)=1F(a)
P ( ∥ X ∥ < a ) = 2 F ( a ) − 1 P(\|X\|<a) = 2F(a)-1 P(X<a)=2F(a)1
P ( ∥ X ∥ > a ) = 2 [ 1 − F ( a ) ] P(\|X\|>a) = 2[1-F(a)] P(X>a)=2[1F(a)]
离散型随机变量若随机变量X的可能取值可数,则称X为离散型随机变量非离散型随机变量不能按一定的顺序排列起来,不能明确指出某个取值的前或后是哪个值
分布律若离散型随机变量X的任意取值为 x i x_i xi,其概率为 p i p_i pi,则称:
P ( X = x i ) = p i P(X = x_i) = p_i P(X=xi)=pi,i=1,2,…为X的分布律
①分布律只针对离散型随机变量
p i ≥ 0 p_i \geq 0 pi0
Σ p i = 1 \Sigma p_i = 1 Σpi=1
连续型随机变量若随机变量X的分布函数F(x),若存在非负可积函数f(x), 对任意实数x有:
F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = \int_{-\infty}^{x}f(t)dt F(x)=xf(t)dt,则称X是连续型随机变量
①X的取值不可数
②X在任意取值的概率为0
概率密度函数 f ( x ) f(x) f(x)连续型随机变量X的定义中所存在的那个非负可积函数f(x)①非负性
②对应分布函数F(x)连续
③若f(x)在点 x 0 x_0 x0连续,则F(x)在 x 0 x_0 x0处可导,且F’( x 0 x_0 x0) = f( x 0 x_0 x0)
∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty}f(x)dx = 1 +f(x)dx=1
P ( a < X ≤ b ) = ∫ a b f ( x ) d x P(a < X \leq b) = \int_{a}^{b}f(x)dx P(a<Xb)=abf(x)dx
依概率收敛 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是一列随机变量,若存在随机变量X,使得对于任意 ϵ > 0 \epsilon>0 ϵ>0, lim ⁡ n − > ∞ P ( ∥ X n − X ∥ < ϵ ) = 1 \lim\limits_{n->\infty}P(\|X_n-X\|< \epsilon) = 1 n>limP(XnX<ϵ)=1,则称随机变量序列 { X n } \{X_n\} {Xn}依概率收敛于随机变量X,记为 X n → P X X_n \xrightarrow{P} X XnP X依概率收敛是一种概率意义上的收敛,与数学分析中的收敛有明显区别,因为它仅要求“概率”为1,实际上可能是发散的,因此它的条件“更弱”

  • 随机变量的数字特征:
数字特征定义性质
中位数 m m m P ( X ≤ m ) ≥ 1 2 P(X \leq m) \geq \frac{1}{2} P(Xm)21 P ( X ≥ m ) ≤ 1 2 P(X \geq m) \leq \frac{1}{2} P(Xm)21,则称m为随机变量X的中位数中位数反映随机变量X的取值的中间值
期望 E X EX EX离散型: E X = Σ i = 1 + ∞ x i p i EX = \Sigma_{i=1}^{+\infty}x_ip_i EX=Σi=1+xipi,若其绝对收敛,否则不存在;
连续型: E X = ∫ − ∞ + ∞ x f ( x ) d x EX = \int_{-\infty}^{+\infty} xf(x)dx EX=+xf(x)dx, 若其绝对收敛,否则不存在
①数学期望反映了随机变量X取值的平均水平;
∀ C , E ( C ) = C \forall C, E(C) = C C,E(C)=C;
③当 X ≥ 0 X \geq 0 X0时, E X ≥ 0 EX \geq 0 EX0;
方差 D X DX DX E X 2 < + ∞ EX^2 < +\infty EX2<+,则: D X = E ( X − E X ) 2 DX = E(X-EX)^2 DX=E(XEX)2①方差反映了随机变量X的取值相对于期望的分散程度;
②离散型: D X = Σ i = 1 + ∞ ( x i − E X ) 2 p i DX = \Sigma_{i=1}^{+\infty}(x_i-EX)^2p_i DX=Σi=1+(xiEX)2pi
连续型: D X = ∫ − ∞ + ∞ ( x − E X ) 2 f ( x ) d x DX = \int_{-\infty}^{+\infty}(x-EX)^2f(x)dx DX=+(xEX)2f(x)dx;
∀ C , D ( C ) = 0 \forall C, D(C) = 0 C,D(C)=0;
∀ c ≠ E X , D X < E [ ( X − c ) 2 ] \forall c\neq EX, DX < E[(X-c)^2] c=EX,DX<E[(Xc)2],即随机变量关于期望的偏离程度比关于其他任何值c的偏离程度都要小
标准差 σ ( X ) \sigma(X) σ(X) σ ( X ) = D X \sigma(X) = \sqrt{DX} σ(X)=DX 标准差的效果与方差基本相同,只是用处有时不同
k k k阶原点矩 E ( a b s ( X ) k ) < + ∞ E(abs(X)^k) < +\infty E(abs(X)k)<+,则称: E X k EX^k EXk为X的k阶原点矩,简称k阶矩X的期望即为一阶(原点)矩
k k k阶中心矩 E ( a b s ( X − E X ) k ) < + ∞ E(abs(X-EX)^k) < +\infty E(abs(XEX)k)<+,则称: E ( X − E X ) k E(X-EX)^k E(XEX)k为X的k阶中心矩X的方差即为二阶中心矩;
三阶中心距常用于衡量分布是否有偏
若三阶中心距为0,则分布关于期望对称);
四阶中心距常用于衡量分布在均值附近的陡峭程度;
协方差 c o v ( X , Y ) cov(X,Y) cov(X,Y) E ( ∥ X ∥ ) , E ( ∥ Y ∥ ) , E ( ∥ [ ( X − E X ) ( Y − E Y ) ] ∥ ) E(\|X\|),E(\|Y\|),E(\|[(X-EX)(Y-EY)]\|) E(X),E(Y),E([(XEX)(YEY)])均有限,则:
c o v ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] cov(X,Y) = E[(X-EX)(Y-EY)] cov(X,Y)=E[(XEX)(YEY)]
①协方差用于衡量两个变量的总体误差;
②若X,Y独立,则: c o v ( X , Y ) = 0 cov(X,Y) = 0 cov(X,Y)=0;
c o v ( X , X ) = D X cov(X,X) = DX cov(X,X)=DX
相关系数 ρ X Y \rho_{XY} ρXY D X > 0 , D Y > 0 DX>0,DY>0 DX>0,DY>0,则:
ρ X Y = c o v ( X , Y ) σ ( X ) ∗ σ ( Y ) \rho_{XY} = \frac{cov(X,Y)}{\sigma(X)*\sigma(Y)} ρXY=σ(X)σ(Y)cov(X,Y)
①相关系数是X,Y的标准化随机变量 X ∗ = X − E X σ ( X ) , Y ∗ = Y − E Y σ ( Y ) X^* = \frac{X-EX}{\sigma(X)},Y^* = \frac{Y-EY}{\sigma(Y)} X=σ(X)XEX,Y=σ(Y)YEY的协方差;
− 1 ≤ ρ X Y ≤ 1 -1 \leq \rho_{XY} \leq 1 1ρXY1;
③当 ρ X Y > 0 \rho_{XY} >0 ρXY>0时,X,Y呈正相关,特殊地:当 ρ X Y = 1 \rho_{XY} = 1 ρXY=1时,X,Y呈线性正相关,即: Y = a X + b ( a > 0 ) Y = aX+b(a>0) Y=aX+b(a>0);
④当 ρ X Y < 0 \rho_{XY} <0 ρXY<0时,X,Y呈负相关,特殊地:当 ρ X Y = − 1 \rho_{XY} = -1 ρXY=1时,X,Y呈线性负相关,即: Y = a X + b ( a < 0 ) Y = aX+b(a<0) Y=aX+b(a<0);
⑤当 ∥ ρ X Y ∥ → 0 \|\rho_{XY}\|\rightarrow 0 ρXY0时,X,Y的线性相关性越弱,特殊地:当 ρ X Y = 0 \rho_{XY} =0 ρXY=0时,X,Y线性无关/不相关
注:不相关仅代表线性无关,但并非一定无关,即不一定独立

  • 随机变量数学特征的相关公式:
    • E ( a X + b Y ) = a E ( X ) + b E ( Y ) E(aX + bY) = aE(X) + bE(Y) E(aX+bY)=aE(X)+bE(Y)
    • X,Y相互独立,则: E [ X Y ] = E X × E Y E[XY] = EX\times EY E[XY]=EX×EY
    • 全期望公式
      • 离散型: E X = Σ j = 1 + ∞ E ( X ∥ Y = y j ) P ( Y = y j ) EX = \Sigma_{j=1}^{+\infty} E(X\|Y = y_j)P(Y = y_j) EX=Σj=1+E(XY=yj)P(Y=yj)
      • 连续型: E X = ∫ − ∞ + ∞ E ( X ∥ Y = y j ) f Y ( y ) d y EX = \int_{-\infty}^{+\infty}E(X\|Y=y_j)f_Y(y)dy EX=+E(XY=yj)fY(y)dy
        其中: E ( X ∥ Y = y j ) E(X\|Y=y_j) E(XY=yj)称在给定 Y = y j Y=y_j Y=yj的条件下X的条件期望,有:
        • 离散型定义: E ( X ∥ Y = y j ) = ∑ i = 1 + ∞ x i P ( X = x i ∥ Y = y j ) = ∑ i = 1 + ∞ x i p i j / p ⋅ j E(X\|Y=y_j) = \sum\limits_{i=1}^{+\infty} x_iP(X=x_i\|Y = y_j) = \sum\limits_{i=1}^{+\infty} x_i p_{ij} / p_{\cdot j} E(XY=yj)=i=1+xiP(X=xiY=yj)=i=1+xipij/pj
        • 连续型定义: E ( X ∥ Y = y j ) = ∫ − ∞ + ∞ x f X ∥ Y = y j ( x ) d x = ∫ − ∞ + ∞ x f ( x , y ) / f Y ( y j ) d x E(X\|Y=y_j) = \int_{-\infty}^{+\infty} xf_{X\|Y=y_j}(x)dx = \int_{-\infty}^{+\infty} x f(x,y) / f_Y(y_j)dx E(XY=yj)=+xfXY=yj(x)dx=+xf(x,y)/fY(yj)dx
    • D X = E X 2 − E 2 X DX = EX^2 - E^2X DX=EX2E2X
    • D ( a X + b ) = a 2 D X D(aX+b) = a^2DX D(aX+b)=a2DX
    • D ( X + ‾ Y ) = D X + D Y + ‾ 2 c o v ( X , Y ) D(X \underline+Y) = DX+DY\underline+ 2cov(X,Y) D(X+Y)=DX+DY+2cov(X,Y)
      特别地,当X,Y相互独立时,有:
      • D ( X + ‾ Y ) = D X + D Y D(X \underline+Y) = DX+DY D(X+Y)=DX+DY
      • D ( X Y ) = D ( X ) D ( Y ) + E 2 X D Y + E 2 Y D X D(XY)=D(X)D(Y)+E^2XDY+E^2YDX D(XY)=D(X)D(Y)+E2XDY+E2YDX
    • c o v ( a X + c , b Y + d ) = a b   c o v ( X , Y ) cov(aX+c,bY+d) = ab\space cov(X,Y) cov(aX+c,bY+d)=ab cov(X,Y)
    • c o v ( X 1 + X 2 , Y ) = c o v ( X 1 , Y ) + c o v ( X 2 , Y ) cov(X_1+X_2,Y) = cov(X_1,Y)+cov(X_2,Y) cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y)
    • c o v ( X , Y ) = E ( X Y ) − E X E Y cov(X,Y) = E(XY) - EXEY cov(X,Y)=E(XY)EXEY
    • c o v ( X + Y , X − Y ) = D ( X ) − D Y cov(X+Y,X-Y) = D(X) - DY cov(X+Y,XY)=D(X)DY
    • 切比雪夫不等式:若随机变量 X X X的期望和方差均存在,则有:
      ∀ ϵ > 0 , P ( ∣ X − E X ∣ ≥ ϵ ) ≤ D X ϵ 2 \forall \epsilon >0, P(|X-EX| \geq \epsilon) \leq \cfrac{DX}{\epsilon^2} ϵ>0,P(XEXϵ)ϵ2DX
    • 柯西-施瓦兹不等式
      E 2 ( X Y ) ≤ E X 2 E Y 2 E^2(XY)\le EX^2EY^2 E2(XY)EX2EY2, [ c o v ( X , Y ) ] 2 ≤ D X D Y [cov(X,Y)]^2 \leq DXDY [cov(X,Y)]2DXDY

  • 常见离散型随机变量的分布:
分布名称参数分布律期望EX方差DX随机试验模型 / 性质
0-1分布 / 两点分布 p p p P ( X = 1 ) = p P(X = 1) = p P(X=1)=p P ( X = 0 ) = 1 − p P(X = 0) = 1-p P(X=0)=1p p p p p ( 1 − p ) p(1-p) p(1p)X只有0,1两个取值,即对应随机试验只有两种结果
泊松分布 P P P λ \lambda λ P ( X = k ) = λ k k ! e − λ P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda} P(X=k)=k!λkeλ λ \lambda λ λ \lambda λ泊松分布一般是大量试验中稀有事件出现频数对应随机变量X服从的分布,即 X ~ P ( λ ) X~P(\lambda) XP(λ),例如:单位时间内电话总机接到的呼叫数;
每天高速公路发生的交通事故;
每页印刷品出现的印刷错误数
二项分布 B B B n , p n,p n,p P ( X = k ) = C n k p k ( 1 − p ) n − k P(X = k) = C_n^kp^k(1-p)^{n-k} P(X=k)=Cnkpk(1p)nk n p np np n p ( 1 − p ) np(1-p) np(1p)二项分布是n重伯努利试验的随机变量X所服从的分布,即 X ~ B ( n , p ) X~B(n,p) XB(n,p);
泊松定理:若极限 lim ⁡ n → ∞ n p = λ \lim\limits_{n \rightarrow \infty} np = \lambda nlimnp=λ存在,且 X ~ B ( n , p ) X~B(n,p) XB(n,p),则X近似服从 P ( λ ) P(\lambda) P(λ)
几何分布 G G G p p p P ( X = k ) = ( 1 − p ) k − 1 p P(X = k) = (1-p)^{k-1}p P(X=k)=(1p)k1p 1 p \frac{1}{p} p1 1 − p p 2 \frac{1-p}{p^2} p21p若n重伯努利试验每次结果只有 A A A A ‾ \overline A A, 且 P ( A ) = p P(A) = p P(A)=p,则将试验进行到A首次出现为止的试验次数对应的随机变量X服从几何分布,即 X ~ G ( p ) X~G(p) XG(p);
几何分布具有无记忆性,即满足: P ( X = s + t ∥ X > t ) = P ( X = s ) P(X = s+t \| X > t) = P(X = s) P(X=s+tX>t)=P(X=s)
超几何分布 H H H n , M , N n,M,N n,M,N P ( X = k ) = C M k C N − M n − k C N n P(X = k) = \frac{C_M^kC_{N-M}^{n-k}}{C_N^n} P(X=k)=CNnCMkCNMnk n M N \frac{nM}{N} NnM g ( n M N ) + g ( n ) g ( M ) g ( N ) g(\frac{nM}{N})+\frac{g(n)g(M)}{g(N)} g(NnM)+g(N)g(n)g(M)
其中 g ( x ) = x ( x − 1 ) g(x) = x(x-1) g(x)=x(x1)
在N件产品(其中有M件次品)中抽出n件进行合格检验,并检验出的次品数对应的随机变量X服从超几何分布,即 X ~ H ( n , M , N ) X~H(n,M,N) XH(n,M,N);
若极限 lim ⁡ N → ∞ n M N = p \lim\limits_{N \rightarrow \infty}\frac{nM}{N}=p NlimNnM=p存在,且 X ~ H ( n , M , N ) X~H(n,M,N) XH(n,M,N),则X近似服从 B ( N , p ) B(N,p) B(N,p)

  • 常见连续型随机变量的分布:
分布名称参数概率密度期望EX方差DX随机试验模型 / 性质
均匀分布 U U U a , b a,b a,b f ( x ) = { 1 b − a a < x < b 0 o t h e r s f(x)=\begin{cases}\cfrac{1}{b-a} & a<x<b\\0 & others \end{cases} f(x)=ba10a<x<bothers a + b 2 \frac{a+b}{2} 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2在[a,b]内随机投点的落点坐标等以长度为度量的几何概型对应的随机变量X服从均匀分布,即 X ~ U ( a , b ) X~U(a,b) XU(a,b)
均匀性:几何分布的概率只和子区间的长度有关,与位置无关
指数分布 E E E λ \lambda λ f ( x ) = { λ e − λ x x ≥ 0 0 o t h e r s f(x)=\begin{cases}\lambda e^{-\lambda x} & x\ge 0 \\0 & others\end{cases} f(x)={λeλx0x0others 1 λ \frac{1}{\lambda} λ1 1 λ 2 \frac{1}{\lambda^2} λ21一般各种物体的寿命对应的随机变量X服从指数分布,即 X ~ E ( λ ) X~E(\lambda) XE(λ)
例如:电子设备的寿命、高能粒子的寿命、生物体的寿命;
指数分布具有无记忆性
正态分布 N N N μ \mu μ, σ 2 \sigma^2 σ2 f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) , x ∈ R f(x) = \cfrac{1}{\sqrt{2\pi}\sigma}\exp(-\cfrac{(x-\mu)^2}{2\sigma^2}),x\in R f(x)=2π σ1exp(2σ2(xμ)2),xR μ \mu μ σ 2 \sigma^2 σ2很多自然和社会现象中的随机变量X都服从正态分布,即 X ~ N ( μ , σ 2 ) X~N(\mu,\sigma^2) XN(μ,σ2);
例如:某地区成年男子的身高、一批工件的直径、测量误差等;
标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),其概率密度记为 Φ ( x ) \Phi(x) Φ(x)
标准化:若 X ~ N ( μ , σ 2 ) X~N(\mu,\sigma^2) XN(μ,σ2),则 Z = X − μ σ ~ N ( 0 , 1 ) Z = \frac{X - \mu}{\sigma}~N(0,1) Z=σXμN(0,1)
F ( x ) F(x) F(x)非初等,故一般正态分布的概率计算通过标准化后查表得到;
f ( x ) f(x) f(x)图像呈钟形,且关于 μ \mu μ轴对称, σ \sigma σ与钟形的陡峭程度呈负相关;
f ( x ) f(x) f(x)的最大值为 1 2 π σ \frac{1}{\sqrt{2\pi }\sigma} 2π σ1;
⑥ 常用的 Φ ( x ) \Phi(x) Φ(x):
Φ ( 1.96 ) = 0.975 \Phi(1.96)=0.975 Φ(1.96)=0.975,
Φ ( 2.58 ) = 0.995 \Phi(2.58)=0.995 Φ(2.58)=0.995,
Φ ( 1.64 ) = 0.95 \Phi(1.64)=0.95 Φ(1.64)=0.95;
3 σ 3\sigma 3σ准则:
P ( ∥ x − μ ∥ < σ ) = 0.6826 P(\|x-\mu\|<\sigma) = 0.6826 P(xμ<σ)=0.6826,
P ( ∥ x − μ ∥ < 2 σ ) = 0.9544 P(\|x-\mu\|<2\sigma) = 0.9544 P(xμ<2σ)=0.9544,
P ( ∥ x − μ ∥ < 3 σ ) = 0.9974 P(\|x-\mu\|<3\sigma )= 0.9974 P(xμ<3σ)=0.9974;
⑧若 X ~ N ( 0 , 1 ) X~N(0,1) XN(0,1),则:
E X 2 n − 1 = 0 EX^{2n-1} = 0 EX2n1=0,
E X 2 n = ( 2 n − 1 ) ! ! EX^{2n} = (2n-1)!! EX2n=(2n1)!!

  • 离散型随机变量函数的分布和期望:

若X是离散型随机变量,且有分布律 / 期望:

X X X x 1 x_1 x1 x 2 x_2 x2 x n x_n xnEX
P P P p 1 p_1 p1 p 2 p_2 p2 p n p_n pn Σ i = 1 + ∞ x i p i \Sigma_{i=1}^{+\infty}x_ip_i Σi=1+xipi

则若Y = g(X) 也是离散型随机变量,则Y的分布律 / 期望:

Y Y Y g ( x 1 ) g(x_1) g(x1) g ( x 2 ) g(x_2) g(x2) g ( x n ) g(x_n) g(xn)EY
P P P p 1 p_1 p1 p 2 p_2 p2 p n p_n pn Σ i = 1 + ∞ g ( x i ) p i \Sigma_{i=1}^{+\infty}g(x_i)p_i Σi=1+g(xi)pi

注:若存在 g ( x i ) = g ( x j ) = . . . = y k g(x_i) = g(x_j) =...= y_k g(xi)=g(xj)=...=yk, 则:
P ( Y = y k ) = P ( X = x i ) + P ( X = x j ) + . . . P(Y = y_k) = P(X = x_i) + P(X = x_j) + ... P(Y=yk)=P(X=xi)+P(X=xj)+...,即将同像取值的概率相加;


  • 连续型随机变量函数的分布和期望:

若X是连续型随机变量,且有概率密度: f X ( x ) f_X(x) fX(x),则Y = g(X)也为连续型随机变量(g(x)为某连续实函数),且有:

  • 概率密度: f Y ( y ) = F Y ′ ( y ) = [ P ( Y ≤ y ) ] ′ = [ P ( g ( X ) ≤ y ) ] ′ = d d y ∫ D : g ( x ) ≤ y f X ( x ) d x f_Y(y) = F_Y'(y) = [P(Y\leq y)]' = [P(g(X)\leq y)]' = \frac{d}{dy} \int\limits_{D: g(x) \leq y} f_X(x)dx fY(y)=FY(y)=[P(Yy)]=[P(g(X)y)]=dydD:g(x)yfX(x)dx

    特殊地,当 g ( X ) g(X) g(X)为单调可导函数,且导数不为零时,有公式:
    f Y ( y ) = { f X [ g − 1 ( y ) ] ∣ g − 1 ( y ) ′ ∣ , α < y < β 0 , o t h e r s f_Y(y) = \begin{cases} f_X[g^{-1}(y)]|g^{-1}(y)'|, &\alpha < y < \beta\\ 0, & others \end{cases} fY(y)={fX[g1(y)]g1(y),0,α<y<βothers

  • 期望: E Y = E [ g ( X ) ] = ∫ − ∞ + ∞ g ( x ) f ( x ) d x EY = E[g(X)] = \int_{-\infty}^{+\infty}g(x)f(x)dx EY=E[g(X)]=+g(x)f(x)dx



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值