符号
(I)
(
I
)
(0-1)分布(离散型)
(II) ( I I ) 伯努利试验,二项分布(离散型)
(III) ( I I I ) 泊松分布(离散型)
(IV) ( I V ) 几何分布(离散型)
(V) ( V ) 超几何分布(离散型)
(VI) ( V I ) 均匀分布(连续型)
(VII) ( V I I ) 指数分布(连续型)
(VIII) ( V I I I ) 正态分布(连续型)
标准正态分布:
随机变量
定义:
设随机试验的样本空间
S={e}.X=X(e)
S
=
{
e
}
.
X
=
X
(
e
)
是定义在样本空间
S
S
上的 实值单值函数。称为 随机变量。
投掷一枚硬币三次,观察出现正面和反面的情况
样本空间是:
以 X X 记三次投掷得到正面的总数,那么对于样本空间 S={e} S = { e } 中每一个样本点 e e ,都有一个数与之对应。 X X 是定义在样本空间上的一个实值单值函数,他的定义域是样本空间 S S ,值域是实数集合,使用函数标记可以将 X X 写成:
离散型随机变量及其分布律
有些随机变量,他的全部可能取值是有限个或者可列无限多个,这种随机变量称为离散型随机变量。
设离散型随机变量
X
X
的所有可能取值为,
X
X
取各个可能值得概率,即事件的概率,为
由概率的定义, pk p k 满足如下两个条件:
1∘
1
∘
,
pk≥0,k=1,2,⋯;
p
k
≥
0
,
k
=
1
,
2
,
⋯
;
2∘
2
∘
,
∑k=1∞pk=1.
∑
k
=
1
∞
p
k
=
1.
我们称
(1)
(
1
)
为离散型随机变量
X
X
的分布律。分布律也可以用表格的形式来表示
(0-1)分布(离散型)
设随机变量
X
X
只可能取与
1
1
两个值,它的分布律是
则称 X X 服从以为参数的 (0−1) ( 0 − 1 ) 分布或两点分布。
(0−1) ( 0 − 1 ) 分布也可以写成
对于一个随机试验,如果它的样本空间只包含两个元素,即 S={e1,e2} S = { e 1 , e 2 } ,我们总能在 S S 上定义一个服从分布的随机变量
(II) ( I I ) 伯努利试验,二项分布(离散型)
设试验
E
E
只有两个可能结果:与
A¯¯¯¯
A
¯
,则称
E
E
为伯努利试验(Bernoulli)试验。
。设,此时
P(A¯¯¯¯)=1−p
P
(
A
¯
)
=
1
−
p
.将
E
E
独立重复地进行次,则称这一连串重复地独立试验为
n
n
重伯努利试验。
这里的重复是指在每次试验中保持不变;
独立是指各次试验结果互不影响,即若以
Ci
C
i
记第
i
i
次试验的结果,为
A
A
或
独立是指
以
X
X
表示重伯努利试验中事件
A
A
发生的次数,是一个随机变量,我们求它的分布律。
X
X
的所有可能取值为由于各次试验是相互独立的,因此事件
A
A
在指定的次试验中发生,在其他
n−k
n
−
k
次试验中
A
A
不发生的概率为
这种指定的方式共有 (nk) ( n k ) 种,它们是两两互不相容的,故在 n n 次试验中发生 k k 次的概率是,记 q=1−p q = 1 − p ,即有
显然:
所以 P{X=k} P { X = k } 满足条件 1∘,2∘ 1 ∘ , 2 ∘ ,注意到 (nk)pkqn−k ( n k ) p k q n − k 刚好是二项式 (p+q)n ( p + q ) n 的展开式中 pk p k 的那一项,我们称变量 X X 服从参数为的二项分布,并记为 X∼b(n,p) X ∼ b ( n , p ) .
特别的,当 n=1 n = 1 时二项分布化为
这就是 (0−1)分布 ( 0 − 1 ) 分 布 .
(III) ( I I I ) 泊松分布(离散型)
设随机变量
X
X
所有可能取值为,而取各个值得概率是
其中 λ>0 λ > 0 是常数。则称 X X 是服从参数的泊松分布,记为 X∼π(λ) X ∼ π ( λ )
对于条件 1∘,2∘ 1 ∘ , 2 ∘
P{X=k}≥0,k=0,1,2,⋯ P { X = k } ≥ 0 , k = 0 , 1 , 2 , ⋯ 且有
泊松定理
设
λ>0
λ
>
0
是一个常数,
n
n
是任意正整数,设,则对任意一个固定的非负整数
k
k
,有
证:
由
pn=λn
p
n
=
λ
n
有
对任意固定的 k k ,当
故有:
(IV) ( I V ) 几何分布(离散)
如果 X X 的概率分布为则称 X X 服从参数为的几何分布,记为 X∼G(p) X ∼ G ( p )
(V) ( V ) 超几何分布(离散)
从一个有限总体中进行不放回抽样常会遇到超几何分布
设由
N
N
个产品组成的总体,其中含有个不合格品,若从中随机不放回地抽取
n
n
个,其中含有不合格的产品个数是一个离散型随机变量,假如
n≤M
n
≤
M
,则
X
X
的可能取值为;若
X
X
可能取值由古典方法
由组合等式
可以看出上述的概率之和为 1 1 ,即故 ∗ ∗ 式所表示的一组概率构成一个概率分布,这个分布称为超几何分布
它含有三个参数记为 X∼H(n,N,M) X ∼ H ( n , N , M )
数学期望
若 X∼H(n,N,M) X ∼ H ( n , N , M ) ,则数学期望为
当 n≪N n ≪ N (即抽取个数 n n 远远小于产品数)时,每次抽取后,总体中不合格品率 p=MN p = M N 改变非常小,这时候的不放回抽样可以看成是放回抽样,这时候超几何分布可以用二项分布来近似。
随机变量的分布函数
设
X
X
是一个随机变量,是任意实数,函数
称为 X X 的分布函数。
对于任意实数,有
因此如果已知 X X 的分布函数,我们就知道落在区间 (x1,x2] ( x 1 , x 2 ] 上的概率。
如果将 X X 看成是数轴上的随机点的坐标,那么,分布函数在 x x 处的函数值就表示落在区间D (−∞,x] ( − ∞ , x ] 上的概率。
分布函数 F(x) F ( x ) 具有以下的基本性质:
1∘ 1 ∘ :
F(x) F ( x ) 是一个不减函数
事实上式 (A) ( A ) 对于任意的实数 x1,x2(x1<x2) x 1 , x 2 ( x 1 < x 2 ) ,有
2∘ 2 ∘ :
0≤F(x)≤1 0 ≤ F ( x ) ≤ 1 ,且
3∘ 3 ∘ :
F(x+0)=F(x) F ( x + 0 ) = F ( x )
连续型随机变量概率密度
如果对于随机变量
X
X
的分布函数,存在非负可积函数
f(x)
f
(
x
)
,对于任意实数
x
x
有
则称 X X 为连续型随机变量,称为 X X 的概率密度函数,简称概率密度
概率密度函数的性质:
:
2∘ 2 ∘ :
3∘ 3 ∘ :对于任意实数 x1,x2(x1≤x2) x 1 , x 2 ( x 1 ≤ x 2 ) ,
4∘ 4 ∘ :若 f(x) f ( x ) 在点 x x 处连续,则有
若 f(x) f ( x ) 具备性质 1∘,2∘ 1 ∘ , 2 ∘ ,引入 G(x)=∫x−∞f(t)dt G ( x ) = ∫ − ∞ x f ( t ) d t ,它是某一随机变量 X X 分布函数,是 X X 的概率密度。
三个重要的连续型随机变量
均匀分布(连续型)
若连续型随机变量
X
X
具有概率密度
则称 X X 在区间上服从均匀分布。记为 X∼U(a,b) X ∼ U ( a , b )
分布函数
(VII) ( V I I ) 指数分布(连续型)
若连续型随机变量
X
X
具有概率密度
分布函数
无记忆性:
对于任意的 s,t>0 s , t > 0 ,有
(VIII) ( V I I I ) 正态分布(连续型)
若连续型随机变量
X
X
具有概率密度
其中 μ,σ(σ>0) μ , σ ( σ > 0 ) 为常数,则称 X X 服从参数为的正态分布或高斯分布,记为 X∼N(μ,σ2) X ∼ N ( μ , σ 2 )
相关性质:
1∘ 1 ∘ :曲线关于 x=μ x = μ 对称,这表明对于任意 h>0 h > 0 有
2∘ 2 ∘ :当 x=μ x = μ 时取到最大值
分布函数
标准正态分布
特别当
μ=0,σ=1
μ
=
0
,
σ
=
1
时称变量
X
X
服从标准正态分布,其概率密度和分布函数分别用表示,既有:
引理:
若 X∼N(μ,σ2) X ∼ N ( μ , σ 2 ) ,则 Z=X−μσ∼N(0,1) Z = X − μ σ ∼ N ( 0 , 1 )
证: