随机变量及其分布和几种常见分布

符号


(I) ( I ) (0-1)分布(离散型)

XB(1,p) X ∼ B ( 1 , p )

(II) ( I I ) 伯努利试验,二项分布(离散型)
XB(n,p) X ∼ B ( n , p )

(III) ( I I I ) 泊松分布(离散型)
Xπ(λ) X ∼ π ( λ )

(IV) ( I V ) 几何分布(离散型)
XG(p) X ∼ G ( p )

(V) ( V ) 超几何分布(离散型)
XH(n,M,N) X ∼ H ( n , M , N )

(VI) ( V I ) 均匀分布(连续型)
XU(a,b) X ∼ U ( a , b )

(VII) ( V I I ) 指数分布(连续型)
XE(θ) X ∼ E ( θ )

(VIII) ( V I I I ) 正态分布(连续型)
XN(μ,σ2) X ∼ N ( μ , σ 2 )

标准正态分布:
XN(0,1) X ∼ N ( 0 , 1 )

随机变量

定义:
设随机试验的样本空间 S={e}.X=X(e) S = { e } . X = X ( e ) 是定义在样本空间 S S 上的 实值单值函数。称X=X(e) 随机变量
投掷一枚硬币三次,观察出现正面和反面的情况
样本空间是:

S={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT} S = { H H H , H H T , H T H , T H H , H T T , T H T , T T H , T T T }

X X 记三次投掷得到正面H的总数,那么对于样本空间 S={e} S = { e } 中每一个样本点 e e X都有一个数与之对应。 X X 是定义在样本空间S上的一个实值单值函数,他的定义域是样本空间 S S ,值域是实数集合{0,1,2,3},使用函数标记可以将 X X 写成:
X=X(e)={3,e=HHH2,e=HHT,HTH,THH1,e=HTT,THT,TTH0,e=TTT

离散型随机变量及其分布律

有些随机变量,他的全部可能取值是有限个或者可列无限多个,这种随机变量称为离散型随机变量
设离散型随机变量 X X 的所有可能取值为xk(k=1,2,), X X 取各个可能值得概率,即事件{X=xk}的概率,为

P{X=xk}=pk,k=1,2,.(1) (1) P { X = x k } = p k , k = 1 , 2 , ⋯ .

由概率的定义, pk p k 满足如下两个条件:


1 1 ∘ pk0,k=1,2,; p k ≥ 0 , k = 1 , 2 , ⋯ ;
2 2 ∘ k=1pk=1. ∑ k = 1 ∞ p k = 1.

我们称 (1) ( 1 ) 为离散型随机变量 X X 分布律。分布律也可以用表格的形式来表示
这里写图片描述

(I)(0-1)分布(离散型)

设随机变量 X X 只可能取0 1 1 两个值,它的分布律是

P{X=k}=pk(1p)1k,k=0,1(0<p<1)

则称 X X 服从以p为参数的 (01) ( 0 − 1 ) 分布或两点分布
(01) ( 0 − 1 ) 分布也可以写成
这里写图片描述
对于一个随机试验,如果它的样本空间只包含两个元素,即 S={e1,e2} S = { e 1 , e 2 } ,我们总能在 S S 上定义一个服从(01)分布的随机变量

X=X(e)={0,e=e11,e=e2 X = X ( e ) = { 0 , 当 e = e 1 1 , 当 e = e 2

(II) ( I I ) 伯努利试验,二项分布(离散型)

设试验 E E 只有两个可能结果:A A¯¯¯¯ A ¯ ,则称 E E 伯努利试验(Bernoulli)试验
。设P(A)=p(0<p<1),此时 P(A¯¯¯¯)=1p P ( A ¯ ) = 1 − p .将 E E 独立重复地进行n次,则称这一连串重复地独立试验为 n n 重伯努利试验
这里的重复是指在每次试验中P(A)=p保持不变;
独立是指各次试验结果互不影响,即若以 Ci C i 记第 i i 次试验的结果,Ci A A A¯i=1,2,,n.
独立是指

P(C1C2Cn)=P(C1)P(C2)P(Cn) P ( C 1 C 2 ⋯ C n ) = P ( C 1 ) P ( C 2 ) ⋯ P ( C n )
.

X X 表示n重伯努利试验中事件 A A 发生的次数X是一个随机变量,我们求它的分布律。 X X 的所有可能取值为0,1,2,,n.由于各次试验是相互独立的,因此事件 A A 在指定的k(0kn)次试验中发生,在其他 nk n − k 次试验中 A A 不发生的概率为

pp  pk(1p)(1p)  (1p)(n-k)=pk(1p)nk

这种指定的方式共有 (nk) ( n k ) 种,它们是两两互不相容的,故在 n n 次试验中A发生 k k 次的概率是(nk)pk(1p)nk,记 q=1p q = 1 − p ,即有

P{X=k}=(nk)pk(1p)nk,k=0,1,2,,n. P { X = k } = ( n k ) p k ( 1 − p ) n − k , k = 0 , 1 , 2 , ⋯ , n .

显然:
P{X=k}0,k=0,1,2,,n; P { X = k } ≥ 0 , k = 0 , 1 , 2 , ⋯ , n ;

k=0nP{X=k}=k=0n(nk)pk(1p)nk=(p+q)n=1 ∑ k = 0 n P { X = k } = ∑ k = 0 n ( n k ) p k ( 1 − p ) n − k = ( p + q ) n = 1

所以 P{X=k} P { X = k } 满足条件 1,2 1 ∘ , 2 ∘ ,注意到 (nk)pkqnk ( n k ) p k q n − k 刚好是二项式 (p+q)n ( p + q ) n 的展开式中 pk p k 的那一项,我们称变量 X X 服从参数为n,p的二项分布,并记为 Xb(n,p) X ∼ b ( n , p ) .
特别的,当 n=1 n = 1 时二项分布化为
P{X=k}=pkq1k,k=0,1 P { X = k } = p k q 1 − k , k = 0 , 1

这就是 (01) ( 0 − 1 ) 分 布 .

(III) ( I I I ) 泊松分布(离散型)

设随机变量 X X 所有可能取值为0,1,2,,而取各个值得概率是

P{X=k}=λkeλk!,k=0,1,2, P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2 , ⋯

其中 λ>0 λ > 0 是常数。则称 X X 是服从参数λ泊松分布,记为 Xπ(λ) X ∼ π ( λ )
对于条件 1,2 1 ∘ , 2 ∘
P{X=k}0,k=0,1,2, P { X = k } ≥ 0 , k = 0 , 1 , 2 , ⋯ 且有
k=0P{X=k}=k=0λkeλk!=eλk=0λkk!=eλeλ=1 ∑ k = 0 ∞ P { X = k } = ∑ k = 0 ∞ λ k e − λ k ! = e − λ ∑ k = 0 ∞ λ k k ! = e − λ ⋅ e λ = 1

泊松定理

λ>0 λ > 0 是一个常数, n n 是任意正整数,设npn=λ,则对任意一个固定的非负整数 k k ,有

limn(nk)pnk(1pn)nk=λkeλk!

证:
pn=λn p n = λ n

(nk)pkn(1pn)nk=n(n1)(nk+1)k!(λn)k(1λn)nk=λkk![1(11n)(1k1n)](1λn)n(1λn)k ( n k ) p n k ( 1 − p n ) n − k = n ( n − 1 ) ⋯ ( n − k + 1 ) k ! ( λ n ) k ( 1 − λ n ) n − k = λ k k ! [ 1 ⋅ ( 1 − 1 n ) ⋯ ( 1 − k − 1 n ) ] ( 1 − λ n ) n ( 1 − λ n ) − k

对任意固定的 k k ,当n
1(11n)(1k1n)1,(1λn)neλ,(1λn)k1. 1 ⋅ ( 1 − 1 n ) ⋯ ( 1 − k − 1 n ) → 1 , ( 1 − λ n ) n → e − λ , ( 1 − λ n ) − k → 1.

故有:
limn(nk)pkn(1pn)nk=λkeλk! lim n → ∞ ( n k ) p n k ( 1 − p n ) n − k = λ k e − λ k !

(IV) ( I V ) 几何分布(离散)

如果 X X 的概率分布为P{X=k}=qk1p(k=1,2;0<p<1;q=1p)则称 X X 服从参数为P的几何分布,记为 XG(p) X ∼ G ( p )

(V) ( V ) 超几何分布(离散)

从一个有限总体中进行不放回抽样常会遇到超几何分布
设由 N N 个产品组成的总体,其中含有M个不合格品,若从中随机不放回地抽取 n n 个,其中含有不合格的产品个数X是一个离散型随机变量,假如 nM n ≤ M ,则 X X 的可能取值为0,1,,n;若 X X 可能取值0,1,,M由古典方法

P{X=x}=CxMCnxNMCnN(*) (*) P { X = x } = C M x C N − M n − x C N n

由组合等式
x=0rCxMCnxNM=CnN ∑ x = 0 r C M x C N − M n − x = C N n

可以看出上述的概率之和为 1 1 ,即x=0rP{X=x}=1 式所表示的一组概率构成一个概率分布,这个分布称为超几何分布
它含有三个参数N,M,n记为 XH(n,N,M) X ∼ H ( n , N , M )
数学期望
XH(n,N,M) X ∼ H ( n , N , M ) ,则数学期望为
E(X)=x=0rxCxMCnxNMCnN=nMNx=1rCx1M1CnxNMCn1N1=nMN E ( X ) = ∑ x = 0 r x C M x C N − M n − x C N n = n M N ∑ x = 1 r C M − 1 x − 1 C N − M n − x C N − 1 n − 1 = n M N

nN n ≪ N (即抽取个数 n n 远远小于产品数N)时,每次抽取后,总体中不合格品率 p=MN p = M N 改变非常小,这时候的不放回抽样可以看成是放回抽样,这时候超几何分布可以用二项分布来近似。

随机变量的分布函数

X X 是一个随机变量,x是任意实数,函数

F(x)=P{Xx},<x<+ F ( x ) = P { X ≤ x } , − ∞ < x < + ∞

称为 X X 的分布函数。
对于任意实数x1,x2,(x1<x2),有
P{x1<Xx2}=P{Xx2}P{Xx1}=F(x2)F(x1)(A) (A) P { x 1 < X ≤ x 2 } = P { X ≤ x 2 } − P { X ≤ x 1 } = F ( x 2 ) − F ( x 1 )

因此如果已知 X X 分布函数,我们就知道X落在区间 (x1,x2] ( x 1 , x 2 ] 上的概率。
如果将 X X 看成是数轴上的随机点的坐标,那么,分布函数F(x) x x 处的函数值就表示X落在区间D (,x] ( − ∞ , x ] 上的概率。
分布函数 F(x) F ( x ) 具有以下的基本性质:

1 1 ∘ :
F(x) F ( x ) 是一个不减函数
事实上式 (A) ( A ) 对于任意的实数 x1,x2(x1<x2) x 1 , x 2 ( x 1 < x 2 ) ,有
F(x2)F(x1)=P{x1<Xx2}0 F ( x 2 ) − F ( x 1 ) = P { x 1 < X ≤ x 2 } ≥ 0

2 2 ∘ :
0F(x)1 0 ≤ F ( x ) ≤ 1 ,且
F()=limxF(x)=0,F()=limxF(x)=1 F ( − ∞ ) = lim x → − ∞ F ( x ) = 0 , F ( ∞ ) = lim x → ∞ F ( x ) = 1

3 3 ∘ :
F(x+0)=F(x) F ( x + 0 ) = F ( x )

连续型随机变量概率密度

如果对于随机变量 X X 的分布函数F(x),存在非负可积函数 f(x) f ( x ) ,对于任意实数 x x

F(x)=xf(t)dt

则称 X X 连续型随机变量f(x)称为 X X 概率密度函数,简称概率密度
概率密度函数的性质:

1:

f(x)0; f ( x ) ≥ 0 ;

2 2 ∘ :
+f(x)dx=1 ∫ − ∞ + ∞ f ( x ) d x = 1

3 3 ∘ :对于任意实数 x1,x2(x1x2) x 1 , x 2 ( x 1 ≤ x 2 ) ,
P{x1<Xx2}=F(x2)F(x1)=x2x1f(x)dx P { x 1 < X ≤ x 2 } = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( x ) d x

4 4 ∘ :若 f(x) f ( x ) 在点 x x 处连续,则有F(x)=f(x)

f(x) f ( x ) 具备性质 1,2 1 ∘ , 2 ∘ ,引入 G(x)=xf(t)dt G ( x ) = ∫ − ∞ x f ( t ) d t ,它是某一随机变量 X X 分布函数,f(x) X X 的概率密度。

三个重要的连续型随机变量

(VI)均匀分布(连续型)

若连续型随机变量 X X 具有概率密度

f(x)={1ba,a<x<b0,

则称 X X 在区间(a,b)上服从均匀分布。记为 XU(a,b) X ∼ U ( a , b )

分布函数

F(x)=0xaba1,x<a,ax<b,xb F ( x ) = { 0 , x < a x − a b − a , a ≤ x < b 1 , x ≥ b

(VII) ( V I I ) 指数分布(连续型)

若连续型随机变量 X X 具有概率密度

f(x)={1θex/θ,x>00,

分布函数

F(x)={1ex/θ0,x>0, F ( x ) = { 1 − e − x / θ , x > 0 0 , 其 他


无记忆性:
对于任意的 s,t>0 s , t > 0 ,有
P{X>s+tX>s}=P{X>t} P { X > s + t ∣ X > s } = P { X > t }


P{X>s+tX>s}=P{(X>s+t)(X>s)}P{X>t}=P{X>s+t}P{X>t}=1F(s+t)1F(s)=e(s+t)/θes/θ=et/θ=P{X>t} P { X > s + t ∣ X > s } = P { ( X > s + t ) ∩ ( X > s ) } P { X > t } = P { X > s + t } P { X > t } = 1 − F ( s + t ) 1 − F ( s ) = e − ( s + t ) / θ e − s / θ = e − t / θ = P { X > t }

(VIII) ( V I I I ) 正态分布(连续型)

若连续型随机变量 X X 具有概率密度

f(x)=12πσe(xμ)22σ2,<x<+

其中 μ,σ(σ>0) μ , σ ( σ > 0 ) 为常数,则称 X X 服从参数为μ,σ正态分布高斯分布,记为 XN(μ,σ2) X ∼ N ( μ , σ 2 )
相关性质:

1 1 ∘ :曲线关于 x=μ x = μ 对称,这表明对于任意 h>0 h > 0

P{μh<Xμ}=P{μ<Xμ+h} P { μ − h < X ≤ μ } = P { μ < X ≤ μ + h }

2 2 ∘ :当 x=μ x = μ 时取到最大值
f(μ)=12πσ f ( μ ) = 1 2 π σ


分布函数
F(x)=12πσxe(tμ)22σ2dt F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t

标准正态分布
特别当 μ=0,σ=1 μ = 0 , σ = 1 时称变量 X X 服从标准正态分布,其概率密度和分布函数分别用ϕ(x),Φ(x)表示,既有:

ϕ(x)=12πex2/2Φ(x)=12πxet2/2dtΦ(x)=1Φ(x) ϕ ( x ) = 1 2 π e − x 2 / 2 Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t 容 易 得 到 : Φ ( − x ) = 1 − Φ ( x )

引理:
XN(μ,σ2) X ∼ N ( μ , σ 2 ) ,则 Z=XμσN(0,1) Z = X − μ σ ∼ N ( 0 , 1 )
证:
P{Zx}tμσ=uP{Zx}=P{Xμσx}=P{Xμ+σx}=12πμ+σxe(tμ)22σ2dt=12πxeu2/2du=Φ(x) P { Z ≤ x } = P { X − μ σ ≤ x } = P { X ≤ μ + σ x } = 1 2 π ∫ − ∞ μ + σ x e − ( t − μ ) 2 2 σ 2 d t 令 : t − μ σ = u , 得 P { Z ≤ x } = 1 2 π ∫ − ∞ x e − u 2 / 2 d u = Φ ( x )

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值