谱定理等周边定理

0.1 正交矩阵

  • 简述:我的转置是我的逆,那我就是正交矩阵
  • 定义:

orthogonal_matrix ( A ) : = ( A ∈ R n × n    and    A T A = I n ) \text{orthogonal\_matrix}(A):=\left(A\in \R^{n\times n}\;\text{and}\;A^TA=I_n\right) orthogonal_matrix(A):=(ARn×nandATA=In)

0.2 对角矩阵

  • 简述:如果一个矩阵只有对角线上可以有非零元素,除此之外其他位置元素均为零,那么这个矩阵是对角矩阵
  • 定义:

diagonal_matrix ( A ) : = A ∈ R n × n and    ∀ i ∈ { 1 , ⋯   , n }    ∀ j ∈ { 1 , ⋯   , n } ( A i j ≠ 0 ⇒ i = j ) \begin{aligned} &\text{diagonal\_matrix}(A):=A\in \R^{n\times n}\\ &\text{and} \; \forall i \in \{1, \cdots, n\}\;\forall j\in\{1,\cdots,n\}(A_{ij} \neq 0 \Rightarrow i=j) \end{aligned} diagonal_matrix(A):=ARn×nandi{1,,n}j{1,,n}(Aij=0i=j)

  • 表示:

diag ( λ 1 , ⋯   , λ n ) : = A    where    A ∈ R n × n    and    ( ∀ i ∈ { 1 , ⋯   , n }    A i i = λ i )    and    diagonal_matrix ( A ) \begin{aligned} &\text{diag}(\lambda_1, \cdots, \lambda_n):=A\;\\ &\text{where}\;A\in \R^{n\times n}\;\text{and}\;(\forall i\in\{1, \cdots, n\}\;A_{ii}=\lambda_i) \;\text{and}\;\text{diagonal\_matrix}(A) \end{aligned} diag(λ1,,λn):=AwhereARn×nand(i{1,,n}Aii=λi)anddiagonal_matrix(A)

0.3 实对称矩阵

  • 简述:我的转置是我自己,那我就是对称矩阵
  • 定义:

symmetric_matrix ( A ) : = ( A ∈ R n × n    and    A T = A ) \text{symmetric\_matrix}(A):=\left(A\in \R^{n\times n} \; \text{and}\; A^T=A\right) symmetric_matrix(A):=(ARn×nandAT=A)

0.4 二次型

  • 描述: x = ( x 1 , ⋯   , x n ) T x=(x_1,\cdots,x_n)^T x=(x1,,xn)T 是一个变量构成的向量, A A A 是一个方阵,则向量函数 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx 称为与 A A A 对应的二次型函数
  • 定义:

quadratic_form A : = f where    f : R n ↦ R ,    f ( x ) = x T A x \begin{aligned} &\text{quadratic\_form}_A:=f\\ &\text{where}\; f:\R^n\mapsto \R, \; f(x)=x^TAx\\ \end{aligned} quadratic_formA:=fwheref:RnR,f(x)=xTAx

0.5 矩阵相似

  • 定义:

A ∼ B : = ∃ P    orthogonal_matrix ( P )    and    A = P T B P A\sim B:=\exist P\;\text{orthogonal\_matrix}(P)\text{\;and\;}A=P^TBP AB:=Porthogonal_matrix(P)andA=PTBP

0.6 特征值

  • 描述:一个矩阵在某些方向上做乘法的作用被简化为线性的缩放,缩放系数就是特征值
  • 定义:

eigenvalue_set ( A ) : = { λ    ∣    ∃ x ∈ R n    ( x ≠ 0    and    A x = λ x ) } \text{eigenvalue\_set}(A):=\{\lambda\;|\;\exist x\in R^n\;(x\neq0\text{\;and\;}Ax=\lambda x)\} eigenvalue_set(A):={λxRn(x=0andAx=λx)}

  • 补充:最大特征值又被称为谱半径

1.1 谱定理

  • 简述:任意实对称矩阵一定可以相似对角化,对角阵元素为该矩阵特征值
  • 内容:

∀ A    symmetric_matrix ( A ) ⇒ ∃ Λ    ∃ P    ( diagonal_matrix ( Λ )    and    orthogonal_matrix ( P )    and    A ∼ Λ    and                             { Λ i i    ∣    i ∈ { 1 , ⋯   , n } } = eigenvalue_set ( A ) ) \begin{aligned} &\forall A\;\text{symmetric\_matrix}(A)\Rightarrow \\ &\exist \Lambda\;\exist P\;(\text{diagonal\_matrix}(\Lambda) \text{\;and\;}\text{orthogonal\_matrix}(P)\text{\;and\;}A\sim \Lambda \text{\;and\;}\\ &\;\;\;\;\;\;\;\;\;\;\;\;\{\Lambda_{ii}\;|\;i\in\{1, \cdots, n\}\}=\text{eigenvalue\_set}(A)) \end{aligned} Asymmetric_matrix(A)∃ΛP(diagonal_matrix(Λ)andorthogonal_matrix(P)andAΛand{Λiii{1,,n}}=eigenvalue_set(A))

  • 证明:待补充

1.2 谱半径定理

  • 简述:实对称矩阵的最大特征值等于其二次型在单位向量空间上的最大值
  • 内容:

symmetric_matrix ( A ) ⇒ max    eigenvalue_set ( A ) = max ⁡ x ∈ R n , ∥ x ∥ = 1 { quadratic_form A ( x ) } \text{symmetric\_matrix}(A) \Rightarrow \text{max}\;\text{eigenvalue\_set}(A)=\max_{x\in\R^n,\|x\|=1}\{\text{quadratic\_form}_A(x)\} symmetric_matrix(A)maxeigenvalue_set(A)=xRn,x=1max{quadratic_formA(x)}

  • 思路:对 A A A 做相似对角化
  • 证明:待补充
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值