总理同学的编程尝试

为大家见证传说中的初学者暴力编程(C/C++)

openjudge 百练 4150 上机 DP

【题面】

4150:上机

总时间限制: 1000ms 内存限制: 65536kB

–> 题目链接 <–


描述

又到周末了,同学们陆陆续续开开心心的来到机房上机。jbr也不例外,但是他到的有点晚,发现有些机位上已经有同学正在做题,有些机位还空着。细心的jbr发现,一位同学来到机房,坐在机位i上,如果他的左右两边都空着,他将获得能力值a[i];如果当他坐下时,左边或者右边已经有一个人在上机了,他将获得能力值b[i];如果当他坐下时,他的左边右边都有人在上机,他将获得能力值c[i]。

同时他发现,已经在上机的同学不会受到刚要坐下的同学的影响,即他们的能力值只会在坐下时产生,以后不会发生变化;第一个机位左边没有机位,最后一个机位右边没有机位,无论何时坐在这两个机位上将无法获得c值。

这时jbr发现有一排机器还空着,一共有N个机位,编号1到N。这时有N位同学们陆陆续续来到机房,一个一个按照顺序坐在这排机位上。聪明的jbr想知道怎么安排座位的顺序,可以使这N位同学获得能力值的和最大呢?

输入

第一行一个整数N(1<= N <= 10000)

第二行N个数,表示a[i]

第三行N个数,表示b[i]

第四行N个数,表示c[i]

(1<= a[i],b[i],c[i] <=10000)

输出

一个整数,表示获得最大的能力值和

样例输入

4
1 2 2 4
4 3 3 1
2 1 1 2

样例输出

14

提示

第一位同学坐在第四个机位上,获得能力值4;

第二位同学坐在第三个机位上,获得能力值3;

第三位同学坐在第二个机位上,获得能力值3;

第四位同学坐在第一个机位上,获得能力值4;

总和为14。

【思路】

最开始把这道题想难了,害得我想了一个多小时…

考虑每相邻的三个位置,这三个位置到来的先后顺序只有六种情况

中间位置先到:

... [2nd] [1st] [3rd] ... (0)
... [3rd] [1st] [2nd] ...

中间位置中间到:

... [1st] [2nd] [3rd] ... (1)
... [3rd] [2nd] [1st] ... (2)

中间位置后到:

... [1st] [3rd] [2nd] ... (3)
... [3rd] [2nd] [1st] ...

我们分别把这些情况标号为0 ~ 3(其中0和3表示两种情况)。

我们要判断某一个位置i对答案的贡献是a[i],b[i]还是c[i],只需要确定它与相邻的两个位置到来的先后顺序,而不需要判断不相邻的位置的关系。因此,0和3可以各表示两种情况。

然后我们定义:dp[i][x]表示以第i位为中间点的连续三个座位,来人的先后次序情况为x时,前i个位置能力值的和最大是多少。

以 x = 0,为例:因为,在i-1,i,i+1这三个位置中,i是最早到的。所以,在i-2,i-1,i这三个位置中,i-1不可能是最早到的,要么是第二个到的,要么是第三个到的。这样就可以用dp[i-1][2]dp[i-1][3]更新答案。

x = 1 ~ 3 同理。 这样我们就可以从dp[i-1]转移到dp[i]。不过要注意特判dp[1],dp[1][1]dp[1][3]是不存在的,应该被过滤掉。

【代码】

#include<cstdio>
#include<algorithm>
using namespace std;

const int maxn = 10000 + 10, inf = 0x7f7f7f7f / 2;
int n, a[maxn], b[maxn], c[maxn], dp[maxn][4];

//dp[i][0]: 在 i-1, i, i+1中, i是最早到的 
//dp[i][1]: 在 i-1, i, i+1中, i-1是最早到的, i是第二个到的 
//dp[i][2]: 在 i-1, i, i+1中, i+1是最早到的, i是第二个到的 
//dp[i][3]: 在 i-1, i, i+1中, i是最晚到的  

int main(){
    scanf("%d", &n);

    for(int i=1; i<=n; i++)scanf("%d", &a[i]);
    for(int i=1; i<=n; i++)scanf("%d", &b[i]);
    for(int i=1; i<=n; i++)scanf("%d", &c[i]);

    dp[1][0] = a[1]; dp[1][2] = b[1];
    dp[1][1] = -inf; dp[1][3] = -inf;
    for(int i=2; i<=n; i++){
        dp[i][0] = max(dp[i-1][2], dp[i-1][3]) + a[i];
        dp[i][1] = max(dp[i-1][0], dp[i-1][1]) + b[i];
        dp[i][2] = max(dp[i-1][2], dp[i-1][3]) + b[i];
        dp[i][3] = max(dp[i-1][0], dp[i-1][1]) + c[i];
    }
    int ans = max(dp[n][0], dp[n][1]);
    printf("%d\n", ans);
    return 0;
}

2018.1.22 GGN

阅读更多
版权声明:文章纯属版主手敲,请同学们尊重版主的知识产权。 https://blog.csdn.net/GGN_2015/article/details/79128960
文章标签: DP
个人分类: 算法导论
上一篇莫比乌斯反演基础
下一篇openjudge 百练 4151 电影节 贪心
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭