CF172Div1C Game on tree(树+期望)

题目

原题链接:点这里

题目陈述

大意:给定一颗树,然后每次随机删除一个节点,删除它的同时他的子树都会消失,每次删除的节点等概率,问删除掉所有节点的期望步数

样例解释

  • 如果给定了一下这棵树
    在这里插入图片描述

  • 有两种删除这棵树的方法,

  • 第一种方案:第一次就选择了 1 1 1,整棵树直接被删除,概率为 1 2 \cfrac{1}{2} 21,执行的步骤为 1 1 1次,所以该方案的期望为 1 ∗ 1 2 = 1 2 1*\cfrac{1}{2}=\cfrac{1}{2} 121=21

  • 第二种方案:第一次选择了 2 2 2,第二次选择了 1 1 1,因为第一选择 2 2 2的概率为 1 2 \cfrac{1}{2} 21,第二次只有一个节点,选择到 1 1 1的概率为 100 % 100\% 100%,故整个方案被实现的概率为 1 2 \cfrac{1}{2} 21,执行的步骤为 2 2 2次,该方案的步骤为 2 ∗ 1 2 = 1 2*\cfrac{1}{2}=1 221=1

  • 总的期望步骤为所有方案的期望之和 1 2 + 1 = 1.5 \cfrac{1}{2}+1=1.5 21+1=1.5

  • 如果给定了如下这棵树
    在这里插入图片描述

  • 经过了上一个例子,相信你已经有一定感觉了

方案 被实现的概率 执行的步骤
1 1/3 1
2 1 1/6 2
3 1 1/6 2
2 3 1 1/6 3
3 2 1 1/6 3
  • 最后总的期望步骤为 1 3 ∗ 1 + 1 6 ∗ 1 + 1 6 ∗ 2 + 1 6 ∗ 3 + 1 6 ∗ 3 = 2 \cfrac{1}{3}*1+\cfrac{1}{6}*1+\cfrac{1}{6}*2+\cfrac{1}{6}*3+\cfrac{1}{6}*3=2 311+611+612+613+613=2

算法思路

  • 首先我们考虑这样一个问题,对于一个节点,它什么时候会对我们的答案有贡献?
  • 对于一个节点,在一整个完整的操作过程中,无非是有被选到没有被选到,分别对应于 0 0 0 1 1 1,我们用 a i a_i ai来表示这个值
  • 我们假设第 i i i个点被选择到的概率为 p i p_i pi,那么最后它对答案的贡献 E i = 0 ∗ ( 1 − p i ) + 1 ∗ p i = p i E_i=0*(1-p_i)+1*p_i=p_i Ei=0(1pi)+1pi=pi,总得答案就是 E = ∑ i = 1 n E i E=\sum_{i=1}^{n}E_i E=i=1nEi
  • 那么一个点被选到的概率有是多少呢?
  • 我们知道,一个节点被删除掉的情况,只有他的任意一个祖先被选择到,或者他自身被选择到的时候,他就会删除掉。
  • 换言之,反过来,它被选择到的时候,就说明它的任意一个祖先节点都还在
  • 接下来我们用标记为黑色代表删除
  • 我们随机生成一个由 1 1 1 n n n组成的 n n n个数的操作序列,我们首先找到第一个未被染成黑色的节点,然后将这个节点,,即其子树都染成黑色,重复上述操作,直至整个序列都是黑色。
  • 对于节点 i i i,他能被选择到,则说明它的任意一个祖先节点都在它的后面
  • 因为 i i i节点有 d e e p [ i ] − 1 deep[i]-1 deep[i]1个祖先,仅看 i i i节点和它的祖先的情况,考虑插空法,每个祖先前面都有一个空,最后一个祖先后面也有一个空,总共有 d e e p [ i ] deep[i] deep[i]个空位可以插入。
  • 只有第一个空位是满足该节点会被选择到的,即概率 p i = 1 d e e p [ i ] p_i=\cfrac{1}{deep[i]} pi=deep[i]1
  • 故最后的期望为 E = ∑ i = 1 n 1 d e e p [ i ] E=\sum_{i=1}^{n}\cfrac{1}{deep[i]} E=i=1ndeep[i]1

代码实现

// #pragma GCC optimize("O3")
#include <bits/stdc++.h>
#include <unordered_map>
#include <unordered_set>
using namespace std;

#define debug(x) cerr << #x << ": " << x << '\n'
#define bd cerr << "----------------------" << el
#define el '\n'
#define cl putchar('\n')
#define pb push_back
#define eb emplace_back
#define x first
#define y second
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define loop(i, a, b) for (int i = (a); i < (b); i++)
#define dwn(i, a, b) for (int i = (a); i >= (b); i--)
#define ceil(a, b) (a + (b - 1)) / b
#define ms(a, x) memset(a, x, sizeof(a))
#define inf 0x3f3f3f3f
#define db double

typedef long long LL;
typedef long double LD;
typedef pair<int, int> PII;
typedef pair<db, db> PDD;
typedef vector<int> vci;

const int N = 1e5 + 10, M = 2e6 + 10, E = 1e3 + 10, md = 1e9 + 7;
const double PI = acos(-1), eps = 1e-8;

int T, n, m;

int u, v;
vci g[N];
int h[N];
int dfs(int u)
{
    for (auto v : g[u])
    {
        if (!h[v])
        {
            h[v] = h[u] + 1;
            dfs(v);
        }
    }
}

int main()
{
    cin.tie(0);
    cout.tie(0);
    cin >> n;
    rep(i, 1, n - 1)
    {
        cin >> u >> v;
        g[v].pb(u);
        g[u].pb(v);
    }
    h[1] = 1;
    db ans = 0;
    dfs(1);
    rep(i, 1, n)
    {
        ans += 1.0 / h[i];
    }
    printf("%.12lf",ans);
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值