Passable Paths (hard version)(LCA)

Problem - G2 - CodeforcesCodeforces. Programming competitions and contests, programming communityhttps://codeforces.com/contest/1702/problem/G2题意为给出一个树,再给出q个查询,每个查询给出树上点的子集,问这一串点能否构成树上的一个简单通路很明显这一题可以用LCA求解,首先我们要确定链的两端点,我们可以先求出最深的那个点,然后求另一个子树的最深节点,如果求不出另一个端点那肯定都在一条链上直接YES就行

然后我们就可以通过lca判断除断电外的点到两端点的距离是否等于两端点距离,通过这个可以判断是否在链上。

 

int head[MAXN];
int nxt[MAXN];
int ver[MAXN];
int cnt;
int Log2[MAXN];
int dep[MAXN];
int Fa[MAXN][21];
void add(int x, int y) {
	ver[++cnt] = y;
	nxt[cnt] = head[x];
	head[x] = cnt;
}

void dfs(int p, int fa) {
	Fa[p][0] = fa;
	for (int i = 1; i <= Log2[dep[p]]; i++) {
		Fa[p][i] = Fa[Fa[p][i - 1]][i - 1];
	}
	for (int i = head[p]; i; i = nxt[i]) {
		int v = ver[i];
		if (v == fa)
			continue;
		dep[v] = dep[p] + 1;
		dfs(v, p);
	}
}

int lca(int x, int y) {
	if (dep[x] < dep[y])
		swap(x, y);
	while (dep[x] != dep[y]) {
		x = Fa[x][Log2[dep[x] - dep[y]]];
	}
	if (x == y)
		return x;
	for (int i = Log2[dep[x]]; i >= 0; i--) {
		if (Fa[x][i] != Fa[y][i])
			x = Fa[x][i], y = Fa[y][i];
	}
	return Fa[x][0];
}

int Get_Dis(int x, int y) {
	return dep[x] + dep[y] - 2 * dep[lca(x, y)];
}

void solve() {
	int t;
	scanf("%d", &t);
	vector<int> v(t + 1);
	int p1, p2;
	for (int i = 1; i <= t; i++) {
		scanf("%d", &v[i]);
	}
	p1 = v[1];
	for (int i = 2; i <= t; i++) {
		if (dep[p1] < dep[v[i]])
			p1 = v[i];
	}
	p2 = 0;
	for (int i = 1; i <= t; i++) {
		if (v[i] == p1)
			continue;
		if (lca(p1, v[i]) != v[i]) {
			if (p2 == 0)
				p2 = v[i];
			else if (dep[v[i]] > dep[p2])
				p2 = v[i];
		}
	}
	if (p2 == 0)
		return void(printf("YES\n"));
	int rec = Get_Dis(p1, p2);
	bool flag = true;
	for (int i = 1; i <= t; i++) {
		if (v[i] == p1 || v[i] == p2)
			continue;
		if (Get_Dis(v[i], p1) + Get_Dis(v[i], p2) != rec) {
			flag = false;
			break;
		}
	}
	if (flag)
		printf("YES\n");
	else
		printf("NO\n");
}

int main() {
	int n;
	scanf("%d", &n);
	for (int i = 2; i <= n; i++) {
		Log2[i] = Log2[i / 2] + 1;
	}
	int x, y;
	for (int i = 1; i <= n - 1; i++) {
		scanf("%d %d", &x, &y);
		add(x, y);
		add(y, x);
	}
	dfs(1, 0);
	int q;
	scanf("%d", &q);
	while (q--)
		solve();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值