Python的Series序列对象

本文详细介绍了Pandas库中Series数据结构的获取方法,包括使用Series()函数和DataFrame获取,以及Series对象的属性、位置索引、标签索引访问和布尔索引。此外,还涵盖了Series的数学运算和统计计算功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

目录

前言

一、Series序列对象的获取 

1.使用Series()函数

2.利用DataFrame获取

二、Series序列对象的属性

三、Series序列对象的访问

1.通过位置索引访问

2.通过标签索引访问

3.通过布尔索引访问

四、Series序列对象的计算

1.基本数学运算

2.统计计算


前言

        在Python的Pandas库中,Series是一种基本的数据结构,用于存储一维数组,并可以带有标签。利用pandas库从外部读取数据到python中形成的表格叫DataFrame表格对象,而Series序列对象就是DataFrame表格对象中的某一列数据。

        Series序列对象在数据分析中非常有用,可以用于存储和处理单变量的数据集。它提供了许多方法和属性,用于执行各种数据操作和分析任务。

一、Series序列对象的获取 

首先需要导入pandas库:

import pandas as pd 

1.使用Series()函数

创建Series对象可以使用Pandas库中的Series函数。例如,以下代码创建一个包含整数1到6的Series对象:

a = pd.Series([1, 2, 3, 4, 5, 6])

输出结果如下:

0    1
1    2
2    3
3    4
4    5
5    6
dtype: int64

 2.利用DataFrame获取

DataFrame是一个二维的表格型数据结构,每个列都是一个Series对象。可以通过列名来获取DataFrame中的Series对象:

data = {'A': [1, 2, 3], 'B': [4, 5, 6]}  
df = pd.DataFrame(data)  
  
b = df['A']  # 获取名为'A'的列,即一个Series对象

输出结果如下:

0    1
1    2
2    3
Name: A, dtype: int64

二、Series序列对象的属性

Series序列对象具有多种属性,包括但不限于:

属性 含义
values 元素(值)
index 索引
na
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值