目录
前言
在Python的Pandas库中,Series是一种基本的数据结构,用于存储一维数组,并可以带有标签。利用pandas库从外部读取数据到python中形成的表格叫DataFrame表格对象,而Series序列对象就是DataFrame表格对象中的某一列数据。
Series序列对象在数据分析中非常有用,可以用于存储和处理单变量的数据集。它提供了许多方法和属性,用于执行各种数据操作和分析任务。
一、Series序列对象的获取
首先需要导入pandas库:
import pandas as pd
1.使用Series()函数
创建Series对象可以使用Pandas库中的Series函数。例如,以下代码创建一个包含整数1到6的Series对象:
a = pd.Series([1, 2, 3, 4, 5, 6])
输出结果如下:
0 1
1 2
2 3
3 4
4 5
5 6
dtype: int64
2.利用DataFrame获取
DataFrame是一个二维的表格型数据结构,每个列都是一个Series对象。可以通过列名来获取DataFrame中的Series对象:
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)
b = df['A'] # 获取名为'A'的列,即一个Series对象
输出结果如下:
0 1
1 2
2 3
Name: A, dtype: int64
二、Series序列对象的属性
Series序列对象具有多种属性,包括但不限于:
属性 | 含义 |
---|---|
values | 元素(值) |
index | 索引 |
na |