机器人数学基础 3D 空间的位置表示 空间位置

3D姿态的表达方式则有多种。常见的如欧拉角、四元数、旋转向量、旋转矩阵等。

一、欧拉角

欧拉角是可以表示3D空间中任何旋转的3个值。一共有3种欧拉角:俯仰角(Pitch)、偏航角(Yaw)和滚转角(Roll)。

 俯仰角是往上或往下看的角,第一张图。第二张图展示了偏航角,偏航角表示我们往左和往右看的程度。滚转角代表我们如何翻滚摄像机,通常在太空飞船的摄像机中使用。每个欧拉角都有一个值来表示,把三个角结合起来我们就能够计算3D空间中任何的旋转向量了。

同时关于这三个旋转角,我们有两种旋转轴的选取方式,从而引申出两种不同的欧拉角:

  1. 静态欧拉角,以图形学中常说的世界坐标系为基准,该坐标系静止不动,故称为静态。
  2. 动态欧拉角,以物体自身坐标系为基准,该坐标系相对于物体自身静止,但每次旋转之后,都会相对世界坐标系发生变动。

 四元数

四元数是简单的超复数复数是由实数加上虚数单位 i 组成,其中i²= -1。 相似地,四元数都是由实数加上三个虚数单位 i、j和k 组成,而且它们有如下的关系: i² = j² = k² = -1, iº = jº = kº = 1 , 每个四元数都是 1、i、j 和 k 的线性组合,即是四元数一般可表示为a + bi+ cj + dk,其中a、b、c 、d是实数。

对于i、j和k本身的几何意义可以理解为一种旋转,其中i旋转代表Z轴与Y轴相交平面中Z轴正向向Y轴正向的旋转,j旋转代表X轴与Z轴相交平面中X轴正向向Z轴正向的旋转,k旋转代表Y轴与X轴相交平面中Y轴正向向X轴正向的旋转,-i、-j、-k分别代表i、j、k旋转的反向旋转。

旋转向量

​

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。
它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
​

                     A*R = B

这个式子说,有A、B两个坐标系,从B坐标到A坐标的旋转变换可以由这个R矩阵表示;其中,R矩阵的每一列分别是B坐标的x, y, z轴在A坐标中的表示;而由于旋转矩阵的转置正是其逆,R矩阵的每一行则分别是A坐标的x, y, z轴在B坐标中的表示。

 

比如说,上图两个坐标系,我们可以直接把R写出来:第一列,因为XB轴与ZA轴重合,所以是[0; 0; 1];第二列,YB轴与YA轴方向正好相反,所以是[0; -1; 0];同理,第三列是[1; 0; 0]。如果按照每一行来写,则第一行是与ZB重合的XA轴[0,0,1],第二行是与YB轴反方向的YA轴[0, -1, 0],第三行则是与XB轴重合的ZA轴[1, 0, 0]。

如果我们又想加上位移,怎么办呢;正是下面的旋转矩阵;

旋转矩阵

3D变换矩阵:平移、缩放、旋转.

 

3D变换矩阵是一个4x4的矩阵,即由16个实数组成的二维数组,在三维空间中,任何的线性变换都可以用一个变换矩阵来表示。本文介绍从变换矩阵中提取出平移、缩放、旋转向量的方法,提取公式的复杂程度为“平移;

最后一列就是平移向量;前面 3*3 表示旋转,缩放;

下面这张图可以直观地看到,平移、缩放、旋转在变换矩阵中的位置关系

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: 机器人机构学是机器人学中的一个重要分支,它研究机器人的结构、运动与作业特性。机器人机构学的数学基础主要包含矢量、矩阵、三角函数、微积分等数学知识。 首先,矢量在机器人机构学中被广泛应用,它可以表示物体在空间中的位置、速度和加速度等。而机器人机构的分析和设计需要利用矢量相加减的运算规律,以确定机器人的运动规律。 其次,矩阵也是机器人机构学中不可或缺的数学工具,矩阵可以用于表示机器人的运动传递和控制,以及描述机器人各部件的位置和运动状态等。通过求解矩阵变换,可以精确计算机器人的运动学特性。 再者,三角函数在机器人机构学中也扮演着重要的角色,机器人通常采用旋转关节来实现运动,而旋转的角度可以用正弦和余弦函数来表示,从而可以得出机器人关节间的角度关系。 此外,微积分是机器人机构学中一个很重要的分支,它可以用于求解速度、加速度和力矩等动力学特性,为机器人的仿真和控制提供重要的理论基础。 综上所述,机器人机构学的数学基础涵盖了矢量、矩阵、三角函数、微积分等课程内容,这些数学知识对于机器人机构的运动规律分析、动力学特性求解和运动控制等方面都有着重要的作用。 ### 回答2: 机器人机构学是研究机器人结构、构造、运动、控制等问题的一门学科。而机器人机构学的数学基础包括向量代数、矩阵代数、三角函数、微积分等数学基础知识。 首先,向量代数是机器人机构学的重要数学基础。在机器人运动学模型中,向量代数被广泛应用于描述机器人运动的行进方向和位移变化。 其次,矩阵代数也是机器人机构学中不可或缺的数学工具。在机器人运动学模型的积分计算中,矩阵代数可用于求解机构系统的运动正解和逆解问题。 此外,三角函数也是机器人机构学的重要数学基础,因为机器人在运动过程中存在着角度变化,三角函数常用于描述机器人的角位移和角速度等问题。 最后,微积分也是机器人机构学中不可或缺的数学工具。机器人机构运动学模型中的微积分计算可用于求解机构系统的速度、加速度和动力学特性等问题。 综上所述,机器人机构学的数学基础包括向量代数、矩阵代数、三角函数、微积分等基础知识,这些数学工具在机器人机构学中的应用也是非常广泛的。 ### 回答3: 机器人机构学是机械工程学科中的一门重要分支,它的研究对象是机械结构和机器人的运动学和动力学性质。机器人机构学的数学基础包括向量、矩阵、坐标变换、欧拉角、四元数、雅克比矩阵等几个方面。 首先,向量在机器人机构学中是一个基础概念。机械臂的运动状态通常用向量来描述,例如位姿向量、速度向量、角速度向量等。 其次,矩阵机器人机构学的数学基础中也占有重要地位。矩阵主要用于描述坐标系之间的转换关系,例如从基坐标系到工具坐标系的转换矩阵、从机器人关节角度到末端执行器位置方向的转换矩阵等。 坐标变换是机器人机构学中的重要数学工具之一。坐标变换用于将一个坐标系的位置方向描述转换到另一个坐标系中。在机器人机构学中,常用的坐标变换包括旋转矩阵、平移矩阵、欧拉角和四元数。 欧拉角和四元数都是用于描述旋转的数学工具。欧拉角在机器人机构学中常用于描述机器人的末端执行器相对于基坐标系的旋转,而四元数则常用于描述机器人关节的姿态。 雅可比矩阵机器人机构学中的另一种重要数学工具。它用于描述机器人运动学中速度和角速度之间的关系。通过雅可比矩阵,可以将机器人的轨迹规划转化为关节空间路径规划。 总之,机器人机构学的数学基础涉及了向量、矩阵、坐标变换、欧拉角、四元数和雅可比矩阵等几个方面。它们是机器人机构学中研究和控制机器人动作的重要工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恋恋西风

up up up

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值