线性代数本质

线性代数

第一课 向量是什么

对于物理专业,向量是二维空间的方向和长度,确定值之后可以在二维面上随意迁移,

对于计算机vector是一个list,可能用来表示一个对象的两种属性,前后顺序不变

generally,只要两个向量相加以及数字与向量相乘有意义,向量可以是任何东西——这句话wait for call back for now

向量加法向量数乘二者贯穿线性代数始终

向量是空间中的箭头向量有序的数字列表 这两个观点碰撞形成了线性代数中的重要概念,有序的数字列表中的数字代表了空间中坐标轴上的数字,从而给出了空间中箭头的长度与方向,每一对数对应一个唯一向量

向量加法就是在空间中把两个向量都走一遍的结果

向量数乘就是把一个向量的长度进行缩放

第二课 线性组合、张成的空间与基

基,i-hat 和 j-hat 分别就是i方向和j方向上长度为一的向量 hat就是^这个符号,放在ij头顶表示单位向量

i-hat在xy坐标轴就是(0,1) j-hat在xy坐标轴就是(1,0);

所以二维空间中任何一个向量就可以是 两个基缩放向量并相加的结果

两个数乘向量的和被称为这两个向量的线性组合
在这里插入图片描述

两个二维线性无关向量得到一个面,三个二维向量得到整个三维空间
在这里插入图片描述
在这里插入图片描述

线性无关定义:任何其中一个向量都不能被其他一个或多个向量表示

第三课 矩阵就是线性变换

线性变换的理解

线性变换:线性变换类似于函数,输入一个向量 输出一个向量,但是叫做线性变换是因为不能忽略变换的过程是一个运动的过程

还有两点:原点不能变、并且直线不能变成曲线(保持网格线平行并且均匀分布)

如果经过线性变换,依旧可以通过新的基坐标得到变换前的任意一点的新位置

比如变换前 v坐标:(-1,2),我们就知道变换前,v = -1i+2j;
且当我们知道变换后基坐标为(1,-2)、(3 , 0),那么可以推算出,新的v坐标为 (1,-2)* -1+(3,0)*2=(-1,2)+(6,0)= (5,2)

也就是用新的基乘以原先的标量,标量就是指原先的两个基向量数乘(缩放)时的标量

二维矩阵在线性变换中的理解

那么二维矩阵就是两个新的基,两列数代表两个新的基的坐标,
用他们乘以原先的某个向量对应基的标量就是某个向量的新坐标
在这里插入图片描述

这张图,x y 就是线性变换之前 被变换向量在原来的基上缩放大小的标量,ac是线性变换后新的i基的坐标,bd是线性变换后新的j基的坐标,第二步就是用被变换向量对应原来来的基上缩放大小的标量乘以线性变换后基的坐标,

第四课 矩阵相乘就是线性变换复合

首先根据上一节来说矩阵是什么?矩阵就是线性变换,矩阵本身的数字代表的就是元向量(自己编的词,就是(1,0)和(0,1)这一对为基的span)第一次变换后,,新的基的坐标,这个坐标能够帮助所有原先坐标快速线性变换到新的坐标

如果进行多次变换,因为如果是一组(1,0)和(0,1)这个基进过一次变换,基就变了,要像普通向量做线性变换一样,用新基(两个)去做线性变换才能得到这两次线性变换的矩阵

第五课 行列式

一个矩阵(一次线性变换)改变面积的比例叫做这个矩阵的 行列式

当整个空间改变定向,也就是i-hat和j-hat相对位置发生改变,行列式为负,但是其绝对值依然是改变面积的比例

应用到三维空间则是体积的缩放

在这里插入图片描述

c是单位向量i在y轴上的缩放量,b同理

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值