(原创) 电源滤波为何要用几个不同量级的电容并联?


       理论上讲,理想的电容其阻抗随频率的增加而减少(1/jwc), 这样的话,电源输出滤波时不是用一个大电容就够了,这个大电容滤低频可以,对于高频其阻抗也更小! 但实际的电路应用中,却不是如此,往往用量级不同的几个大小电容并联起来才好,并且大家对这种应用的说法都是:“大电容滤低频,小电容滤高频。”
      为何实际应用和理论推断大大的不同呢? 这种情况一般都是有其他的因素破坏了电容的理论表现,那是什么因素呢?
      这个因素就是,对于实际的电容元件,其由于引线和PCB布线原因,实际上电容元件是电感和电容和电阻的串联,我们知道电感的阻抗随着频率值的增大而增大,电容的阻抗随着频率的增大而减小,每个电容元器件都有个“串联谐振频率”。
       其值约为:ω=1/ (LC) 1/2  (LC的根号 再求倒数)
       在 串联谐振频率以下电容元件呈容性, 串联谐振频率以上电容元件呈感性!
       由上面公式可知,电容值越大的电容,其串联 谐振频率越低。所以一般大电容滤低频波,小电容滤高频波。
       另外当电容元件的体积越大、引脚越长,其本身的电感值也越大,  串联 谐振频率也就越低。
       这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高。
       至于到底用多大的电容,这是一个参考
                           电容谐振频率 
              电容值       DIP (MHz)      STM (MHz) 
              1.0uF                2.5                     5 
              0.1uF                 8                     16 
              0.01?F              25                     50 
              1000pF             80                    160 
              100 pF              250                   500 
              10 pF                800                1.6(GHz)
快速排序算法是一种高效的排序方法,其基本思想是通过一个轴值将数组分为两部分,一边的元素都比轴值小,另一边的元素都比轴值大,然后递归地对这两部分继续进行排序。为了深入理解快速排序并能够分析其性能,我推荐参考《算法第四版》一书。这本书将帮助你全面掌握快速排序的原理和实现,以及如何对算法性能进行分析。 参考资源链接:[塞奇威克与韦恩《算法第四版》:经典全面的编程指南](https://wenku.csdn.net/doc/646c5238543f844488d07196?spm=1055.2569.3001.10343) 首先,快速排序的Java实现可以通过递归函数完成。以下是快速排序的一个基础实现示例代码: ```java public static void quickSort(int[] arr, int low, int high) { if (low < high) { int pivotIndex = partition(arr, low, high); quickSort(arr, low, pivotIndex - 1); quickSort(arr, pivotIndex + 1, high); } } private static int partition(int[] arr, int low, int high) { int pivot = arr[high]; int i = low - 1; for (int j = low; j < high; j++) { if (arr[j] < pivot) { i++; swap(arr, i, j); } } swap(arr, i + 1, high); return i + 1; } private static void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } ``` 在上述代码中,`quickSort`函数是一个递归函数,它接受一个数组以及要排序的数组段的起始和结束索引。`partition`函数用于根据轴值划分数组,并返回轴值的最终位置。`swap`函数用于交换数组中的两个元素。 性能分析方面,快速排序在平均情况下的时间复杂度为O(n log n),最坏情况为O(n^2)。为了分析不同数据量级下的性能,可以使用大O表示法来估计算法的运行时间,同时通过编写测试用例对算法进行基准测试。基准测试时,可以使用不同大小和随机性水平的数据集,记录算法处理这些数据集所需的时间,并观察数据量增加时性能的变化趋势。 在深入学习快速排序算法和性能分析时,建议阅读《算法第四版》中的相关章节。该书不仅详细讲解了快速排序算法的原理和实现,还包括了对算法性能的理论分析和实践案例,有助于读者全面理解算法并应用于实际问题解决中。 参考资源链接:[塞奇威克与韦恩《算法第四版》:经典全面的编程指南](https://wenku.csdn.net/doc/646c5238543f844488d07196?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值